マイクロソフトリサーチは、競合モデルよりも大幅に小さいサイズで、Pythonコーディングに特化した新しい大規模言語モデルphi-1を紹介しました

Microsoft Research introduced a new large-scale language model, phi-1, which is significantly smaller in size than competing models and specialized for Python coding.

トランスフォーマーのデザインが発見されて以来、大規模な人工ニューラルネットワークのトレーニングの技術は飛躍的に進歩してきましたが、この成果の基礎となる科学はまだ幼い段階にあります。同じ時期にトランスフォーマーがリリースされたことで、圧倒的で混乱するような結果の中に秩序が出現し、計算量またはネットワークサイズを増やすと性能が予測可能に向上するというスケーリング則が判明しました。これらのスケーリング則は、深層学習におけるスケールの調査のためのガイドとして機能し、これらの則の変化の発見により性能が急激に向上しました。

本論文では、別の軸に沿ってデータ品質をどのように改善できるかを調査しています。高品質のデータはより良い結果を生み出します。たとえば、データのクリーニングは、現在のデータセットを作成するための重要なステップであり、比較的小さなデータセットまたはデータをより多くのイテレーションに通すことができます。ニューラルネットワークに英語を教えるために人工的に作成された高品質のデータセットであるTinyStoriesに関する最近の研究は、高品質のデータの利点がこれ以上のものであることを示しています。改良されたスケーリング則により、高品質のデータは大規模なモデルの性能を、よりシンプルなトレーニング/モデルで一致させることができるようになります。

この研究では、マイクロソフトリサーチの著者たちは、良質なデータが大規模言語モデル(LLMs)のSOTAをさらに向上させながら、データセットのサイズとトレーニング計算を大幅に減らすことができることを実証しています。トレーニングが必要なモデルが小さいほど、LLMsの環境コストを大幅に削減することができます。彼らは、コーディングのためにトレーニングされたLLMsを使用して、自分のdocstringsから特定のPython関数を構築しました。後者の論文で提唱された評価基準であるHumanEvalは、コード上でLLMのパフォーマンスを比較するために頻繁に使用されています。

彼らは、1.3Bパラメータモデルをトレーニングし、phi-1と呼びます。7Bトークン以上(合計50Bトークン以上)を約8回通過した後、200Mトークン未満でファインチューニングを行い、高品質のデータが確立されたスケーリングルールを破る能力を示しました。一般的には、「教科書の品質」のデータを事前にトレーニングし、GPT-3.5を使用して人工的に生成されたデータとオンラインソースからのフィルタリングされたデータの両方を使用し、ファインチューニングには「教科書の演習のような」データを使用します。彼らは、1つのLLM生成のみを使用して、競合モデルよりもはるかに小さなデータセットとモデルサイズでありながら、HumanEvalで50.6%のpass@1精度、MBPP (Mostly Basic Python Programs)で55.5%のpass@1精度を達成しました。

彼らは、7Bトークン以上(合計50Bトークン以上)を約8回通過した後、200Mトークン未満でファインチューニングを行い、1.3Bパラメータのphi-1モデルをトレーニングすることで、高品質のデータが確立されたスケーリングルールを破る能力を示しました。一般的には、「教科書の品質」のデータを事前にトレーニングし、GPT-3.5を使用して人工的に生成されたデータとオンラインソースからのフィルタリングされたデータの両方を使用し、ファインチューニングには「教科書の演習のような」データを使用します。彼らは、1つのLLM生成のみを使用して、競合モデルよりもはるかに小さなデータセットとモデルサイズでありながら、HumanEvalで50.6%のpass@1精度、MBPP (Mostly Basic Python Programmes)で55.5%のpass@1精度を達成しました。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

「MITの研究者が、デバイス内の意味的セグメンテーションのための新しい軽量マルチスケールアテンションを紹介」

セマンティックセグメンテーションは、コンピュータビジョンの基本的な課題であり、入力画像の各ピクセルを特定のクラスに分...

データサイエンス

AIの力 なぜウェブ開発者はまだ絶対的な存在なのか

AIは今日の流行語です多くのソフトウェア会社が開発中にそれを使用していますが、みんな同じことを言っていますAIは開発者を...

機械学習

ビジネス変革を加速させるクラウドネイティブ統合プラットフォーム

この記事では、クラウドネイティブな統合プラットフォームの重要な役割について掘り下げ、そのパワーを活用してビジネスの変...

データサイエンス

保険顧客の生涯価値予測とセグメンテーション

あなたのビジネスにおいて、顧客はどれくらいの価値がありますか?これは些細な質問ではありませんが、マーケティング戦略、...

AIニュース

「ジェネレーティブAIによる先進的なトランスフォーマーで創造性を解き放つ」

導入 人工知能の絶え間なく進化する風景において、近年際立った存在となっている名前があります。それがトランスフォーマーと...

機械学習

「品質と責任について大規模な言語モデルを評価する」

生成AIに関連するリスクは広く公表されています有毒性、偏見、逸出した個人情報、幻覚は組織の評判に悪影響を与え、顧客の信...