ロボットの犬がMJスタイルでムーンウォークをする:このAI研究は、コードで表現された報酬を、LLMと最適化ベースのモーションコントローラーの間の柔軟なインターフェースとして使用することを提案しています

This AI research proposes using rewards expressed in code as a flexible interface between LLM and an optimization-based motion controller, allowing a robotic dog to perform the moonwalk in MJ style.

人工知能産業は近年世界を席巻しています。新しい研究やモデルがほぼ毎日リリースされ、AIは進化し、より良くなっています。医療分野、教育、マーケティング、ビジネス分野を考慮しても、人工知能と機械学習のプラクティスが産業の運営方法を変え始めています。大規模言語モデル(LLMs)の導入は、ほぼすべての組織に採用されています。GPT-3.5やGPT-4などの有名なLLMは、新しい文脈に対して驚異的な適応性を示し、最小限のハンドクラフトされたサンプルで論理的推論やコード生成などのタスクを可能にしています。

研究者たちは、LLMをロボット制御の改善に活用することも考えています。低レベルのロボット操作はハードウェアに依存しており、LLMトレーニングデータに頻繁に未表示のため、ロボティクスにLLMを適用することは困難です。以前のアプローチでは、LLMを意味論的プランナーとして見なすか、人間が作成した制御プリミティブに依存してロボットと通信する必要がありました。すべての課題に対処するため、Google DeepMindの研究者たちは、報酬関数の適応性と最適化のポテンシャルを活用して、様々なロボット活動を実行する新しいパラダイムを導入しました。

報酬関数は、LLMが定義した中間インターフェースとして機能し、後でロボット制御戦略を指示するために最適化されることができます。これらの関数は、高レベルの言語コマンドまたは訂正を低レベルのロボットの動作に効率的に接続できるため、LLMによって仕様が可能です。チームは、報酬関数を言語と低レベルのロボットアクションのインタフェースとして使用することにより、人間の言語指示がしばしば特定の低レベルのアクションではなく行動結果を記述することが観察されたことから、より高い抽象度で操作することができると述べています。指示を報酬に接続することにより、望ましい結果に関連する深い意味が報酬に捉えられるため、言語とロボットの行動のギャップを埋めるのが容易になります。

このパラダイムには、インタラクティブな行動開発を可能にするMuJoCo MPC(モデル予測制御)リアルタイム最適化器が使用されています。ユーザーが即座に結果を観察し、システムに入力を提供できるため、反復改善プロセスが改善されました。評価プロセスについては、研究者のチームが、シミュレートされた四足ロボットと器用なマニピュレータロボットの両方に対して17のタスクセットを設計しました。この方法は、設計されたタスクの90%を信頼性の高いパフォーマンスで達成できました。一方、Code-as-policiesをインターフェースとして使用するベースライン戦略は、タスクの50%しか完了できませんでした。実際のロボットアームに対する実験も行われ、インタラクティブシステムは、非把持性プッシングなどの複雑な操作スキルを示しました。

結論として、このアプローチは、LLMを報酬パラメータを定義し、ロボット制御のために最適化するために活用することができる有望な手段です。LLM生成の報酬とリアルタイム最適化技術の組み合わせは、反応性とフィードバック駆動の行動作成プロセスを示し、ユーザーがより効率的かつ効果的に複雑なロボット行動を達成することができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIテクノロジー

A. Michael West 医療現場における人間とロボットの相互作用の進展

「人間の運動制御を研究していない時、その大学院生は、自身が研究者として成長するのに役立ったプログラムにボランティア活...

人工知能

マルコフとビネメ・シェビシェフの不等式

「2つの境界の意味と、その発見につながる魅力的で風変わりな出来事を理解する」

機械学習

「最高のAI画像エンハンサーおよびアップスケーリングツール(2023年)」

これらは、利用可能なトップのAI画像アップスケーラーおよびエンハンサーツールのいくつかです: HitPaw Photo Enhancer(エ...

機械学習

このAI論文では、コンピュータビジョンの基盤について包括的な分析を紹介し、事前学習モデルの強みと弱点を明らかにします

コンピュータビジョンにおいて、バックボーンは多くのディープラーニングモデルの基本的なコンポーネントです。分類、検出、...

機械学習

「人工知能(AI)とWeb3:どのように関連しているのか?」

AIとは何ですか? 簡単に言えば、人工知能(AI)とは、通常人間の思考と関連付けられる機能を機械が行う能力のことです。例え...

データサイエンス

「Med-PaLM Multimodal(Med-PaLM M)をご紹介します:柔軟にエンコードし、解釈するバイオメディカルデータの大規模なマルチモーダル生成モデル」

大規模言語モデル(LLM)は、医療、金融、教育、ソーシャルメディアなど、ほとんどの領域で進化しています。医療業界の臨床医...