「高次元のカテゴリ変数に対する混合効果機械学習 – 第二部 GPBoostライブラリ」

Mixing Effects Machine Learning for High-Dimensional Categorical Variables - Part 2 GPBoost Library

実世界のデータを使用したPython&RでのGPBoostのデモ

Illustration of high-cardinality categorical data: box plots and raw data (red points) of the response variable for different levels of a categorical variable — Image by author

高基数のカテゴリカル変数は、データセットのサンプルサイズに対して異なるレベルの数が大きい変数です。このシリーズの第1部では、さまざまな機械学習手法の実証的な比較を行い、ランダム効果がGPBoostアルゴリズムを用いた高基数のカテゴリカル変数の処理に効果的であり、予測精度が最も高いことがわかりました [Sigrist、2022、2023]。この記事では、ツリーブースティングとランダム効果を組み合わせたGPBoostアルゴリズムを、PythonおよびRパッケージのGPBoostライブラリでどのように適用するかを示します。このデモでは、GPBoostライブラリのバージョン1.2.1を使用しています。

目次

∘ 1 紹介∘ 2 データ:説明、読み込み、サンプル分割∘ 3 GPBoostモデルのトレーニング∘ 4 チューニングパラメータの選択∘ 5 予測∘ 6 解釈∘ 7 さらなるモデリングオプション · · 7.1 カテゴリカル変数と他の予測変数との相互作用 · · 7.2 (一般化)線形混合効果モデル∘ 8 結論と参考文献

1 紹介

GPBoostモデルの適用には、次の主なステップがあります:

  1. 以下を指定するGPModelを定義する: — ランダム効果モデル: group_dataを介したグループ化されたランダム効果と/またはgp_coordsを介したガウス過程 — likelihood(固定効果およびランダム効果に条件付けられた応答変数の分布)
  2. 応答変数(label)と固定効果の予測変数(data)を含むDatasetを作成する
  3. 関数gpb.grid.search.tune.parametersを使用して、チューニングパラメータを選択する
  4. モデルをトレーニングする
  5. トレーニングされたモデルの予測と/または解釈を行う

以下では、これらのポイントをステップバイステップで説明します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「ChatGPTにおける自然言語入力のパワーを解き放つ」

自然言語の入力でChatGPTの機能を最大限に活用しましょう高度なモデルからのリアルな対話と正確な応答をお楽しみください今日...

データサイエンス

チャットGPTの潜在能力を引き出すためのプロンプトエンジニアリングのマスタリング

プロンプトエンジニアリングは、ChatGPTやその他の大規模言語モデルのおかげで、風のように私たちの生活の一部にすぐになりま...

人工知能

情報セキュリティ:IoT業界内のAIセキュリティ

この記事では、AIセキュリティについての読者をIoT業界に没入させ、トピックの基盤となるさまざまな種類の「セキュリティ」に...

機械学習

TensorFlowを使用して責任あるAIを構築する方法は?

イントロダクション 人工知能(AI)は、今週リリースされる新しいAIアプリ、機能、プラットフォームが数百あるほど、前例のな...

AIテクノロジー

「ヌガーで科学文書処理を高める」

イントロダクション 自然言語処理および人工知能の分野では、科学的なPDFなどの非構造化データソースから価値ある情報を抽出...

機械学習

このAI論文では、「Lightning Cat」というスマート契約の脆弱性検出ツールを紹介していますこれは、深層学習をベースにしたツールです

スマートコントラクトは、分散型アプリケーションの開発においてブロックチェーン技術で重要な役割を果たしています。スマー...