「高次元のカテゴリ変数に対する混合効果機械学習 – 第二部 GPBoostライブラリ」

Mixing Effects Machine Learning for High-Dimensional Categorical Variables - Part 2 GPBoost Library

実世界のデータを使用したPython&RでのGPBoostのデモ

Illustration of high-cardinality categorical data: box plots and raw data (red points) of the response variable for different levels of a categorical variable — Image by author

高基数のカテゴリカル変数は、データセットのサンプルサイズに対して異なるレベルの数が大きい変数です。このシリーズの第1部では、さまざまな機械学習手法の実証的な比較を行い、ランダム効果がGPBoostアルゴリズムを用いた高基数のカテゴリカル変数の処理に効果的であり、予測精度が最も高いことがわかりました [Sigrist、2022、2023]。この記事では、ツリーブースティングとランダム効果を組み合わせたGPBoostアルゴリズムを、PythonおよびRパッケージのGPBoostライブラリでどのように適用するかを示します。このデモでは、GPBoostライブラリのバージョン1.2.1を使用しています。

目次

∘ 1 紹介∘ 2 データ:説明、読み込み、サンプル分割∘ 3 GPBoostモデルのトレーニング∘ 4 チューニングパラメータの選択∘ 5 予測∘ 6 解釈∘ 7 さらなるモデリングオプション · · 7.1 カテゴリカル変数と他の予測変数との相互作用 · · 7.2 (一般化)線形混合効果モデル∘ 8 結論と参考文献

1 紹介

GPBoostモデルの適用には、次の主なステップがあります:

  1. 以下を指定するGPModelを定義する: — ランダム効果モデル: group_dataを介したグループ化されたランダム効果と/またはgp_coordsを介したガウス過程 — likelihood(固定効果およびランダム効果に条件付けられた応答変数の分布)
  2. 応答変数(label)と固定効果の予測変数(data)を含むDatasetを作成する
  3. 関数gpb.grid.search.tune.parametersを使用して、チューニングパラメータを選択する
  4. モデルをトレーニングする
  5. トレーニングされたモデルの予測と/または解釈を行う

以下では、これらのポイントをステップバイステップで説明します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

デジタルネイティブ(クラウドで生まれた人々)のデータストリーミングの現状

クラウドに生まれたデジタルネイティブを探索し、イノベーションと新しいビジネスモデルにApache Kafkaを活用し、トレンド、...

機械学習

Google Gemini APIを使用してLLMモデルを構築する

導入 ChatGPTとOpenAIのGPTモデルのリリース、およびMicrosoftとのパートナーシップにより、AIの領域にTransformerモデルをも...

機械学習

オペレーションの頭脳:人工知能とデジタルツインで手術の未来を地図化するアトラスメディテック

アスリートが試合のためにトレーニングし、俳優が公演のためにリハーサルするように、外科医も手術の前に準備をします。 今、...

コンピュータサイエンス

「トップの生成AIプロジェクト」

急速に進化する技術のパノラマの中で、生成型AIプロジェクトの出現は、コンテンツの作成、体験、および相互作用の方法を再定...

人工知能

「クロード2 AIチャットボットの使い方 - 新しいChatGPTの競合者」

イントロダクション 複数のAIチャットボットの中でも新たな競争相手、Claude 2に会いましょう。Anthropicによって開発されたC...

機械学習

一緒にAIを学びましょう−Towards AIコミュニティニュースレター#5

おはようございます、AI愛好家の皆さん!今週のポッドキャストのエピソードは必聴で、これまでの24エピソードの中でも一番優...