化学プロセス開発のためのモデルフリー強化学習

化学プロセス開発のモデルフリー強化学習

普遍的な化学プロセスオペレータへの取り組み

Alex Kondratievによる写真、Unsplashから

はじめに

プロセス開発設計最適化、および制御は、化学およびプロセスエンジニアリングにおける主な任務のいくつかです。具体的には、特定の目標(収率やスループットなど)を最大化し、潜在的な制約(入力濃度、流量、反応器容積、溶媒の沸点など)を尊重しながら、最適なレシピまたは適切な装置またはプロセスパラメータの構成を見つけることです(実験室実験を通じて)。これらのタスクを自動化することにより、例えば実験室のロボットを介して、多くの手作業を節約することができます。

最近の強化学習(RL)の進歩により、エージェントは複雑なタスクをマスターし、さまざまなゲームをプレイしたり、行列演算のためのより効率的な数学的手順を発見したりすることが明らかになりました。実験または数値シミュレーションから得られる運動学パラメータを用いることで、エージェントは最適な構成と合成レシピを見つけることができます。ただし、凸最適化とは異なり、アルゴリズム/モデルは直接プロセス制御に使用できます。このような実験は、メソッドのサンプル効率に応じて、コンピュータ上または直接実験室で行われることがあります。長期的には、これによりプロセス開発が(一部)自動化されるでしょう。この記事の目的は、パラセタモールの例を用いて、近接方策最適化(PPO)を使用して、これを説明することです。

問題の定義

ここでは、コンピュータプログラム、いわゆるエージェント、つまり普遍的な化学プロセスオペレータがあります。このオペレータは、化学操作、つまりアクションを実行できる環境に存在します。このようなアクションには、成分Aの投与、入出力フローの増減、温度の増減などが含まれます。エージェントがアクションを実行すると、特定の成分の濃度などの状態に応じて、新しい状態に移行します。

パラセタモール(PC)は、p-アミノフェノール(AP)酢酸無水物(AA)から合成されます(図1a参照)。既知の運動学に基づいて、このプロセスはモデル化され、環境を表すことができます。例えば、連続式攪拌槽反応器(CSTR)として図…に示されています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

新しいAIモデル、たった30BパラメーターでGPT-3を凌駕する

世界的に有名なオープンソース言語モデル(LLMs)プロバイダーであるMosaicMLは、最新世代のNVIDIA H100アクセラレータを搭載...

機械学習

「Gen-AI:楽しさ、恐怖、そして未来!」

この記事では、AIがイメージ生成に与える影響を探究し、開発者や規制などに対してそれが何を意味するのかを考察します

データサイエンス

AIはETLの再発明に時間を浪費する必要はない

「AIコミュニティはデータ統合を再発明しようとしていますが、現在のETLプラットフォームは既にこの問題を解決していますなぜ...

AI研究

「Microsoftの研究者がPIT(Permutation Invariant Transformation)を提案:動的まばらさのためのディープラーニングコンパイラ」

“`html 最近、深層学習は動的スパース性に最適化されたモデルの研究によって注目されています。このシナリオでは、スパ...

AIテクノロジー

「生成AIによる法科学の進展」

はじめに 法科学における生成AIは、人工知能技術を応用してデータ、画像、または他の法科学に関連する証拠情報を生成すること...

AIニュース

「チャンドラヤーン3の着陸:AIとセンサーがISROの壮大な月探査を支援」

宇宙探査の魅惑的な広がりの中で、すべてのミッションは未知へのサイコロのような賭けです。インドの国立宇宙機関であるイン...