「AIが大気衝撃波から津波の初期兆候を見つけることができる」

AI can detect the initial signs of a tsunami from atmospheric shockwaves.

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

津波の早期検出システムは、衛星群からのデータ共有のために国際的な協力が必要です。 ¶ クレジット:DigitalGlobe/Getty Images

フロリダ州に拠点を置く衛星製造会社Terran Orbital Corp.の研究者は、オフシェルフの人工知能(AI)モデルがGPS衛星からの2次元(2D)画像で津波の初期兆候を検出できることを発見しました。

研究者は、NASAのジェット推進研究所とイタリアのサピエンツァ大学の研究者が開発したコンピューターアルゴリズムによって生成されたデータを使用しました。このアルゴリズムは、津波が形成される際の電離層の帯電粒子の密度の変化を測定します。

データは2D画像に変換され、AIによって津波に関連する特徴が識別されました。

AIは、少なくとも70%の地上局が衛星からのデータを受信できなかった電離圏の擾乱パターンを除去した後、90%以上の検出性能を達成しました。ニューサイエンティストからの記事を見る-有料購読が必要な場合があります

要約の著作権は2023年、SmithBucklin、ワシントンD.C.、アメリカに帰属します

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

AIにおける事実性の向上 このAI研究は、より正確かつ反映性のある言語モデルを実現するためのセルフ-RAGを紹介します

セルフリフレクティブリトリーバルオーキュメンテッドジエネレーション(SELF-RAG)は、関連情報を動的に取得し、生成物に反...

人工知能

「生成AIの規制」

生成型の人工知能(AI)が注目を集める中、この技術を規制する必要性が高まっていますなぜなら、この技術は大規模な人口に対...

人工知能

GenAIOps:MLOpsフレームワークの進化

「2019年には、私はLinkedInのブログを公開しましたタイトルは『成功するためになぜML Opsが必要か』でした今日になって、分...

機械学習

トゥギャザーアイは、ShortおよびLongコンテキストの評価で最高のオープンソーストランスフォーマーに対抗する、StripedHyena-7Bという代替人工知能モデルを紹介します

AIと共に、シーケンスモデリングアーキテクチャへの大きな貢献を果たし、StripedHyenaモデルを導入しました。従来のトランス...

AI研究

MITの研究者らが、言語モデルの解読において、新たなトレーニングフリーかつゲーム理論に基づくAI手法を紹介

一部の課題は、現在の言語モデル(LM)によって比較的成功裡に処理されています。これには、質問に答える、事実確認、さらに...

データサイエンス

「AIは医療現場でどのような役割を果たすべきか?」

「私は社会学者としての訓練を受けたことを知っている方もいるかもしれません──正確に言うと、大学院で医療社会学を専攻しま...