RAG vs ファインチューニング — LLMアプリケーションをブーストするための最適なツールはどちらですか?

RAG vs ファインチューニング — 最適なツールは?

あなたのユースケースに適した方法を選ぶための決定版ガイド

Image by author

プロローグ

大規模言語モデル(LLM)への関心の波が高まる中、多くの開発者や組織がその力を利用したアプリケーションの構築に忙しいです。しかし、事前学習済みのLLMが期待通りのパフォーマンスを発揮しない場合、LLMアプリケーションのパフォーマンスを向上させる方法について疑問が生じます。そして最終的には、Retrieval-Augmented Generation(RAG)とモデルのファインチューニングのどちらを使用すべきかという点に至ります。

深く掘り下げる前に、これらの2つの方法を解説しましょう:

RAG:このアプローチは、検索または検索をLLMのテキスト生成に統合します。これには、大規模なコーパスから関連する文書スニペットを取得するリトリーバーシステムと、それらのスニペットの情報を使用して回答を生成するLLMが組み合わされます。要するに、RAGはモデルが外部情報を「参照」して応答を改善するのに役立ちます。

Image by author

ファインチューニング:これは、事前学習済みのLLMを取り、特定のタスクに適応するかパフォーマンスを向上させるために、より小さな特定のデータセットでさらにトレーニングするプロセスです。ファインチューニングにより、データに基づいてモデルの重みを調整し、アプリケーションの独自のニーズに合わせたものにします。

Image by author

RAGとファインチューニングの両方は、LLMベースのアプリケーションのパフォーマンスを向上させる強力なツールですが、最適化プロセスの異なる側面に対処しており、これは一方を選ぶ際に重要です。

<p以前は、ファインチューニングに入る前にRAGを試してみることを組織に提案することがよくありました。これは、両方のアプローチが似たような結果を達成するが、複雑さ、コスト、品質の点で異なるという私の認識に基づいていました。私はさらにこのポイントを以下のように説明していました…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

デジタルアーティストのスティーブン・タンが、今週の「NVIDIA Studio」でソフィッシュティケイテッドなスタイルを披露します

エディターの注:この記事は、週刊のIn the NVIDIA Studio シリーズの一部であり、注目のアーティストを紹介し、クリエイティ...

データサイエンス

「生物カメラは画像を保存します」

シンガポール国立大学の科学者たちは、生物学的な構成要素を使用して、生きた細胞上に画像をエンコードおよび保存しました

機械学習

このAI論文は、RetNetとTransformerの融合であるRMTを紹介し、コンピュータビジョンの効率と精度の新しい時代を開拓しています

NLPにデビューした後、Transformerはコンピュータビジョンの領域に移され、特に効果的であることが証明されました。それに対...

機械学習

Google AIは、アクティブノイズキャンセリング(ANC)ヘッドフォンのための人工知能搭載の革新的な心臓モニタリングモダリティである音響脈波計(APG)を導入します

コンシューマーエレクトロニクスと健康技術の分野において、活発なノイズキャンセリング(ANC)ウェアラブルに健康モニタリン...

データサイエンス

Stack Overflowで最もよく尋ねられるPythonリストの10の質問

Stack Overflowは、ソフトウェア、コーディング、データサイエンスなど、さまざまな分野において、数千もの質問と回答を見つ...

AIニュース

「ショートGPTと出会おう:コンテンツ作成の自動化とビデオ制作プロセスの効率化のためのパワフルなAIフレームワーク」

デジタルコンテンツ制作のスピードが速い世界では、効率性と創造性が重要です。ShortGPTは、コンテンツ制作を自動化し、ビデ...