シミュレーション101:伝導熱伝達

シミュレーション101:伝導熱伝達

計算物理学へのやさしい紹介

導電性、つまり物体間の熱伝導は、私たちが毎日経験するものです。コンロに鍋を置いたり、熱い公園のベンチに座ったりすることで、私たちは導熱の直感的な感覚を得ますが、ここではそのプロセスを形式化し、それをシミュレートするための基本的な計算フレームワークを構築します。導熱は、多くの計算物理学の問題で見られる基本的なツールを使用する優れた最初のシミュレーション問題です。

この記事では、以下のことを行います:

  • 材料を表すメッシュグリッドを作成する
  • 基本的な熱伝導方程式とその計算上の等価式を学ぶ
  • 基礎となる物理法則に基づいてメッシュグリッド内の値を更新する
  • 導熱をシミュレートする

メッシュグリッドの作成

メッシュグリッドは、連続的な空間を離散化するための計算ツールです。つまり、問題のすべての時間と空間で計算を実行することはできないので、通常は一定の間隔で表現された代表的な点のサブセットで計算/シミュレーションを行います。

下の図1では、メッシュグリッドの例を見ることができます。ここでは、空間が均等に配置されたセルに分割されています。これは物理シミュレーションでよく行われる方法です。表面全体で計算/シミュレーションを実行する代わりに、グリッドポイントのみで作業できるため、問題をより実現可能なものにします。

図1:メッシュグリッドの例。シミュレーションでは、このようなグリッドに空間を分割し、点線のグリッド上のすべての点で値を計算します。

上記のメッシュグリッドは、Pythonのnumpyのmeshgrid関数を使用して作成されました。これは1次元配列のセットを受け取り、メッシュグリッドを生成することができます。シミュレーションでは、2次元の表面をモデル化したいので、シミュレーションの評価に使用する間隔の数だけの長さを持つ2つの配列を生成します。以下のコードスニペットでは、シミュレーションの基礎となるゼロで埋められた100×100のメッシュグリッドを作成しています。

import numpy as np#各軸ごとにどれくらいの間隔を設定するかを定義resolution = 100#100x100の長さのゼロで埋められたxとYの配列を作成x = np.zeros(resolution)y =...

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「ElaiのCEO&共同創業者、Vitalii Romanchenkoについてのインタビューシリーズ」

ヴィタリー・ロマンチェンコは、ElaiのCEO兼共同創設者であり、マイク、カメラ、俳優、スタジオの必要なく、個人が一流のビデ...

人工知能

キャルレールの最高製品責任者、ライアン・ジョンソンへのインタビューシリーズ

ライアンは、初期のスタートアップからフォーチュン100の組織まで、多様なテクノロジーと製品開発のリーダーシップ経験を15年...

人工知能

ピーター・マッキー、Sonarの開発者担当責任者-インタビューシリーズ

ピーター・マッキーはSonarのDeveloper Relationsの責任者です Sonarは、悪いコードの1兆ドルの課題を解決するプラットフォー...

人工知能

「リオール・ハキム、Hour Oneの共同創設者兼CTO - インタビューシリーズ」

「Hour Oneの共同創設者兼最高技術責任者であるリオール・ハキムは、専門的なビデオコミュニケーションのためのバーチャルヒ...

人工知能

「コーネリスネットワークスのソフトウェアエンジニアリング担当副社長、ダグ・フラーラー氏 - インタビューシリーズ」

ソフトウェアエンジニアリングの副社長として、DougはCornelis Networksのソフトウェアスタック全体、Omni-Path Architecture...

人工知能

ディープAIの共同創業者兼CEO、ケビン・バラゴナ氏- インタビューシリーズ

ディープAIの創設者であるケビン・バラゴナは、10年以上の経験を持つプロのソフトウェアエンジニア兼製品開発者です彼の目標...