時間の経過とともに失敗する可能性のある若いコホートの犯罪リスクを評価するためのツール

Tool to evaluate the criminal risk of young cohorts that may fail over time.

この研究の結果、個人の将来の行動は、安定した特性、早期の人生の状況、以前の行動、年齢だけでなく、出生コホートのすべてのメンバーに影響を与える社会的変化の結果でもあることが示唆されています。 ¶ クレジット:David Inderlied/Getty Images

カーネギーメロン大学(CMU)、ハーバード大学、ペンシルバニア大学の科学者たちは、犯罪リスクの評価に使用されるリスクアセスメントツール(RAI)によって駆動されるコホートバイアスが社会的変化によって損なわれると提唱しています。

研究者たちは、シカゴの個人の犯罪歴を25年間調べ、1980年代に生まれたコホートの17歳から24歳までの逮捕確率を予測する機械学習ツールが、1990年代中期に生まれたコホートでは最大89%もの確率で過大評価していることを発見しました。

彼らはまた、人種・民族グループ内で大きなコホートバイアスがあり、予想される逮捕の年齢の直前の逮捕措置を含め、高リスクの個人に限定しても持続的に存在することを発見しました。

カーネギーメロン大学のエリカ・モンタナは、「私たちの調査結果は、リスク要因と将来の逮捕との関係が時間の経過とともに安定していないことを示しています。その結果、これらのリスク要因に依存する予測モデルは、系統的かつ重大なエラーのリスクがあります」と説明しています。カーネギーメロン大学ハインツカレッジからのフル記事を見る

抄録の著作権は2023年SmithBucklin、ワシントンDC、アメリカに帰属します。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「BLIVAと出会ってください:テキスト豊かなビジュアル質問をより良く扱うためのマルチモーダルな大規模言語モデル」

最近、大規模言語モデル(LLMs)は、自然言語理解の分野で重要な役割を果たしており、ゼロショットやフューショットのシナリ...

機械学習

xAIはPromptIDEを発表しました:Promptエンジニアリングと人工知能AIの透明性における新たなフロンティア

人工知能開発における画期的な一手として、xAIはPromptIDEを公開しました。PromptIDEは、プロンプトエンジニアリングと機械学...

データサイエンス

マイクロソフトがデータフォーミュレータを導入:データ変換の課題に取り組むためのコンセプト駆動型の可視化作成ツールで、人工知能AIエージェントを活用しています

データの可視化は、データ内のパターン、傾向、洞察を理解するために、データを図形や画像の形式で表示することを指します。...

AI研究

「スピーチの回復を革新する:スタンフォード主導の研究が制約のないコミュニケーションのための高性能な神経プロステーシスを公開」

脳コンピュータインタフェース(BCI)を用いた音声は、障害によりコミュニケーション能力を失った人々のリハビリに有望な応用...

AI研究

天候の変化:AI、高速計算がより速く、効率的な予測を提供することを約束します

2050年までに、極端な天候や気候の頻度と厳しさが増すことにより、ミュンヘン再保険会社によれば、年間100万人の命が失われ、...

機械学習

ビデオアクション認識を最適化するにはどのようにすればよいのでしょうか?深層学習アプローチにおける空間的および時間的注意モジュールの力を明らかにします

アクション認識は、動画中の人間のアクションや動きを自動的に識別し、カテゴリ分けするプロセスです。監視、ロボティクス、...