RAG vs ファインチューニング — LLMアプリケーションをブーストするための最適なツールはどちらですか?

RAG vs ファインチューニング — 最適なツールは?

あなたのユースケースに適した方法を選ぶための決定版ガイド

Image by author

プロローグ

大規模言語モデル(LLM)への関心の波が高まる中、多くの開発者や組織がその力を利用したアプリケーションの構築に忙しいです。しかし、事前学習済みのLLMが期待通りのパフォーマンスを発揮しない場合、LLMアプリケーションのパフォーマンスを向上させる方法について疑問が生じます。そして最終的には、Retrieval-Augmented Generation(RAG)とモデルのファインチューニングのどちらを使用すべきかという点に至ります。

深く掘り下げる前に、これらの2つの方法を解説しましょう:

RAG:このアプローチは、検索または検索をLLMのテキスト生成に統合します。これには、大規模なコーパスから関連する文書スニペットを取得するリトリーバーシステムと、それらのスニペットの情報を使用して回答を生成するLLMが組み合わされます。要するに、RAGはモデルが外部情報を「参照」して応答を改善するのに役立ちます。

Image by author

ファインチューニング:これは、事前学習済みのLLMを取り、特定のタスクに適応するかパフォーマンスを向上させるために、より小さな特定のデータセットでさらにトレーニングするプロセスです。ファインチューニングにより、データに基づいてモデルの重みを調整し、アプリケーションの独自のニーズに合わせたものにします。

Image by author

RAGとファインチューニングの両方は、LLMベースのアプリケーションのパフォーマンスを向上させる強力なツールですが、最適化プロセスの異なる側面に対処しており、これは一方を選ぶ際に重要です。

<p以前は、ファインチューニングに入る前にRAGを試してみることを組織に提案することがよくありました。これは、両方のアプローチが似たような結果を達成するが、複雑さ、コスト、品質の点で異なるという私の認識に基づいていました。私はさらにこのポイントを以下のように説明していました…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

このAIニュースレターは、あなたが必要とするすべてです #57

「AIの世界では、LLMモデルのパフォーマンス評価が注目の話題となりました特に、スタンフォードとバークレーの学生による最近...

AI研究

マイクロソフトの研究者が、言語AIを活用してオンライン検索エンジンを革命化するための「大規模検索モデル」フレームワークを紹介しました

現代社会はインターネット上の情報の拡散によって特徴付けられ、検索エンジンは知識を見つけたりまとめたりするために欠かせ...

AI研究

黄さんの法則に留意する:エンジニアたちがどのように速度向上を進めているかを示すビデオ

話の中で、NVIDIAのチーフサイエンティストであるビル・ダリー氏が、モーアの法則時代後のコンピュータパフォーマンスの提供...

AIニュース

「Amazon SageMakerを使用して、マルチクラウド環境でMLモデルをトレーニングおよびデプロイする」

この投稿では、多クラウド環境でAWSの最も広範で深いAI / ML機能の1つを活用するための多くのオプションの1つを示しますAWSで...

AIニュース

Amazon Lexのチャットボット開発ライフサイクルをテストベンチで加速化する

Amazon Lexは、ボットの開発者がシステムのスケーリング前にエラー、欠陥、またはバグを特定し、ボットが特定の要件、ニーズ...

機械学習

ChatGPTのためのエニグマ:PUMAは、LLM推論のための高速かつ安全なAIアプローチを提案するものです

大規模言語モデル(LLM)は人工知能の領域で革命を起こしています。ChatGPTのリリースはLLMの時代の火付け役となり、それ以来...