RAG vs ファインチューニング — LLMアプリケーションをブーストするための最適なツールはどちらですか?

RAG vs ファインチューニング — 最適なツールは?

あなたのユースケースに適した方法を選ぶための決定版ガイド

Image by author

プロローグ

大規模言語モデル(LLM)への関心の波が高まる中、多くの開発者や組織がその力を利用したアプリケーションの構築に忙しいです。しかし、事前学習済みのLLMが期待通りのパフォーマンスを発揮しない場合、LLMアプリケーションのパフォーマンスを向上させる方法について疑問が生じます。そして最終的には、Retrieval-Augmented Generation(RAG)とモデルのファインチューニングのどちらを使用すべきかという点に至ります。

深く掘り下げる前に、これらの2つの方法を解説しましょう:

RAG:このアプローチは、検索または検索をLLMのテキスト生成に統合します。これには、大規模なコーパスから関連する文書スニペットを取得するリトリーバーシステムと、それらのスニペットの情報を使用して回答を生成するLLMが組み合わされます。要するに、RAGはモデルが外部情報を「参照」して応答を改善するのに役立ちます。

Image by author

ファインチューニング:これは、事前学習済みのLLMを取り、特定のタスクに適応するかパフォーマンスを向上させるために、より小さな特定のデータセットでさらにトレーニングするプロセスです。ファインチューニングにより、データに基づいてモデルの重みを調整し、アプリケーションの独自のニーズに合わせたものにします。

Image by author

RAGとファインチューニングの両方は、LLMベースのアプリケーションのパフォーマンスを向上させる強力なツールですが、最適化プロセスの異なる側面に対処しており、これは一方を選ぶ際に重要です。

<p以前は、ファインチューニングに入る前にRAGを試してみることを組織に提案することがよくありました。これは、両方のアプローチが似たような結果を達成するが、複雑さ、コスト、品質の点で異なるという私の認識に基づいていました。私はさらにこのポイントを以下のように説明していました…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

ChatGPTのコードインタプリター:知っておくべきすべてのこと

OpenAIは、興奮をもって発表を行っており、最新の発表はChatGPT Plusのユーザーを喜ばせることでしょう。数ヶ月の期待を経て...

AI研究

一般的な世界モデル:ランウェイAI研究が新しい長期研究の取り組みを開始

ワールドモデルは、環境の内部理解を構築し、その知識を利用してその空間内の将来のイベントを予測することを目指すAIシステ...

人工知能

AIとオープンソースソフトウェア:誕生時に分かれたか?

この記事では、ルイスがオープンソースソフトウェアと機械学習の交差点と将来について読者と共有します多くの記事が機械学習...

AIニュース

「OpenAIは、『精度が低い』ため、AI文章検出器の提供を中止する」

研究によると、AIの文章検出器は打破可能であり、誤検知も非常に多いことが示されています

AIニュース

「AIに友達になる」

「人工知能に基づくコンパニオンやチャットボットは、長期間の対話を通じて人々が深いつながりを築くことを可能にします」

機械学習

「言語モデルは放射線科を革新することができるのか?Radiology-Llama2に会ってみてください:指示調整というプロセスを通じて特化した大規模な言語モデル」

トランスフォーマーをベースとした大規模言語モデル(LLM)は、ChatGPTやGPT-4などを含むトランスフォーマーに基づく自然言語...