マイクロソフトと香港浸会大学の研究者が、WizardCoder A Code Evol-Instruct Fine-Tuned Code LLMを紹介しました

Microsoft and researchers from Hong Kong Baptist University introduced WizardCoder A Code Evol-Instruct Fine-Tuned Code LLM.

大規模言語モデル(LLM)は最近注目を集め、驚異的な成功を収めています。特にOpenAIのChatGPTは注目すべき例です。これらのモデルは、インターネットの大量のデータでの重要な事前学習と、精密な指示データでのさらなる微調整を利用することで、様々なタスクにおいて最先端のゼロショットパフォーマンスを達成しています。このパターンはコードの理解と生成でも見られます。コードを使用する活動に固有の難しさに対処するために、多くのコードLLMが提案されています。これらのコードLLMは大量のコードデータを利用して事前学習を行い、コードに関連する様々な活動で優れたパフォーマンスを発揮することができます。

しかし、事前学習フェーズに主眼を置いた従来のコードLLMとは異なり、コード領域における細かい指示の調整についてさらなる研究が必要です。様々な活動におけるLMの汎化能力を向上させるために、指示の微調整が最初に使用されました。例えば、OpenAIのInstructGPTは、人間の注釈者に具体的な指示を提供してユーザーの目標との一致を確認するよう求めました。最近の取り組みであるAlpacaは、自己指導アプローチを使用して指示データを生成するためにChatGPTを利用しました。Vicunaは、ユーザーがShareGPT.comに投稿したチャットを利用しました。WizardLMはEvol-Instructアプローチを確立し、現在の指示データを修正してより複雑で多様なデータセットを生成しました。

ただし、これらの技術は、一般的なドメインに主眼を置くことが多く、コードドメインを特に考慮して設計すべきであることに注意する必要があります。このプロジェクトのMicrosoftと香港浸会大学の研究者は、コード固有のEvol-Instructを使用して詳細なコード指示データを生成することで、オープンソースのCode LLMであるStarCoderの機能を向上させることを目指しています。これを実現するために、コーディングに関わる活動に特化したいくつかの方法で進化的なプロンプトプロセスを変更しました。進化的なプロンプトは簡素化され、進化的な指示が改善され、コードのデバッグや時間・空間の制約が含まれるようになりました。彼らのアプローチは最初に基本的なCode Alpacaの指示データを開発するために使用されます。

次に、新たに開発されたコード指示に従うトレーニングセットを使用してStarCoderを微調整し、WizardCoderを得ます。彼らのWizardCoderは、HumanEval、HumanEval+、MBPP、およびDS-100の4つのコード生成ベンチマークの実験結果によると、他のすべてのオープンソースのCode LLMを凌駕し、最先端のパフォーマンスを達成します。HumanEvalでは、pass@1スコアが著しく向上し、HumanEvalで+22.3(57.3 vs 35.0)の増加、MBPPで+8.2(51.8 vs 43.6)の増加が見られます。驚くべきことに、WizardCoderは、AnthropicのClaudeやGoogleのBardよりも、HumanEvalとHumanEval+における合格率において優れた結果を示しています。それにもかかわらず、WizardCoderはかなり小さいにも関わらず、主要なクローズドソースのLLMであるClaude、Bard、PaLM、PaLM-2、およびLaMDAを超えてコード生成の面で優れています。

以下は、この研究の貢献の要約です:

• コードのEvol-Instructを適用したWizardCoderは、オープンソースのCode LLMであるStarCoderの機能を向上させます。

• WizardCoderは、コード生成の面でStarCoder、CodeGen、CodeGee、CodeT5+、InstructCodeT5+、StarCoder-GPTeacher、Instruct-Codegen-16Bを含む他のすべてのオープンソースのCode LLMを大きく凌駕しています。

• サイズがかなり小さいにもかかわらず、WizardCoderはClaude、Bard、PaLM、PaLM-2、およびLaMDAを含む主要なクローズドソースのLLMを超えてコード生成の面で優れています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

シナプスCoR:革命的なアレンジでのChatGPT

新しいシステムプロンプトについて学び、カスタムの指示と併用して使用することで、ChatGPTをAutoGPTに変える方法を学びましょう

AI研究

SalesforceのAI研究者が、LLMを活用した自律エージェントの進化と革新的なBOLAA戦略を紹介します

最近の大規模言語モデル(LLM)の成果により、LLMを使用してさまざまな複雑なタスクを処理するための新しい研究が奨励されて...

AIニュース

インドでのGoogle検索は今やAIによって動作しています | 使い方を学びましょう

Googleは、インド人と日本人が情報の広大な領域を探索する方法を再定義する画期的なイノベーションを発表しました。人工知能...

AI研究

「LangChainとGPT-4を使用した多言語対応のFEMAディザスターボットの研究」

この記事では、洪水や竜巻などの災害に備え、生き残るために、多言語対応のアメリカ連邦緊急事態管理庁(FEMA)の災害チャッ...

データサイエンス

「ChatGPT Essentials:必要なデータサイエンスのチートシート」

イントロダクション 広大なデータセットから意味のある情報を抽出するために、アルゴリズム、統計学、および専門知識が交わる...

AI研究

新たな人工知能の研究が、言語モデルの中でマルチモーダルな連鎖思考推論を提案し、ScienceQAにおいてGPT-3.5を16%上回る結果を示しました(75.17% → 91.68%)

最近の技術の進展により、大規模言語モデル(LLM)は複雑で洗練された推論タスクで非常に優れた成績を収めています。これは、...