新しい研究によって、テキストをスムーズに音声化することができるようになりました | Google

新しい研究によって、テキストを音声化することが可能になりました | Google

明示的に指定せずに、シーケンスの長さの不一致を克服する。

要約

テキスト音声(マルチモーダルモデル)のトレーニングには、独自の問題があります。オーディオのサンプルレートが高い場合、オーディオのシーケンスの長さは対応するテキストよりもはるかに長くなります。テキストとオーディオを同時にトレーニングするために、この不均衡を克服する必要があります(明示的に注釈付きのトレーニングデータを生成せずに怠惰に)。この論文はその問題を解決します。

概要

昨年、テキストによる画像生成の進歩が目覚ましいものとなり、テキストと画像のドメインが共同で表現されるクロスモーダル表現空間の考えに基づくものとなりました。

自動音声認識(ASR)においては、この考え方が音声とテキストの両方を訓練データとして使用し、非対称な音声とテキストのシーケンス長の不一致を特別に扱うことなく、非常に大きなパラメータモデルにスケールすることができる共同音声テキストエンコーダとして応用されています。これらの手法は有望ですが、音声とテキストのシーケンス長の不一致には、アップサンプリングヒューリスティクスまたは明示的なアラインメントモデルによる特別な処理が必要でした。

本研究では、共同音声テキストエンコーダはシーケンスの長さを無視することにより、モダリティ間で一貫した表現を自然に実現することを証明し、一貫性の損失が長さの違いを許し、最良のアラインメントを仮定することができると主張しています。このような損失が、大規模なモノリンガルおよびマルチリンガルシステムの下流ワードエラーレート(WER)を改善することを示しています。

オーディオ埋め込みの水平軸と対応するテキスト埋め込みの垂直軸の埋め込み距離(a)と最良のアラインメント(b)の視覚化。 (a) の濃い点は、近くの埋め込みを持つオーディオとテキストフレームのペアを表し、(b) の黄色の点は、回復された最良のアラインメントのペアを表します。

解決の理論

両方のモダリティ(ここでは、音声とテキスト)で大規模なエンコーダを別々にトレーニングします。この方法では、各モダリティは対になっていない例を提供し、メタモデルは時間次元でペアの例をマッピングする方法を学習します。この表現は、画像+テキストのモダリティで最先端のパフォーマンスを提供できます。ただし、オーディオ+テキストのモダリティ組み合わせではうまく機能しません。

音声認識は、2つのシーケンスモダリティの特定の課題を提供します。…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

シリコンボレー:デザイナーがチップ支援のために生成AIを活用

今日公開された研究論文によれば、生成AIは、最も複雑なエンジニアリングプロジェクトの1つである半導体設計を支援できる方法...

AI研究

「Powderworldに出会おう:AIの汎化理解のための軽量シミュレーション環境」

最近の強化学習(RL)と意思決定において、新しいタスクに対する一般化能力は依然として主要な問題の1つです。RLエージェント...

データサイエンス

「データサイエンスの面接を改善する簡単な方法」

この投稿では、未経験のデータサイエンスの採用マネージャーとしての過ちについての物語と、それが私の技術面接の方法に与え...

機械学習

このAIペーパーは、さまざまなタスクでChatGPTに追いついたり超えたりすると主張するオープンソースの大規模言語モデルの詳細なレビューを公開しています

昨年のChatGPTのリリースは、人工知能コミュニティを驚かせました。最新の大規模言語モデルであるGPTのトランスフォーマーア...

機械学習

「深層学習による遺伝子制御の解明:オルタナティブスプライシングの理解に向けた新たなAIアプローチ」

オルタナティブスプライシングは、遺伝子の制御において基本的なプロセスであり、単一の遺伝子が複数のmRNAバリアントと様々...

データサイエンス

「3つの質問:ロボットの認識とマッピングの研磨」

MIT LIDSのLuca CarloneさんとJonathan Howさんは、将来のロボットが環境をどのように知覚し、相互作用するかについて議論し...