Hugging Faceは、Microsoftとの協力により、Azure上でHugging Faceモデルカタログを開始します

Hugging FaceはMicrosoftと協力してAzure上でモデルカタログを開始します

本日、Hugging FaceはMicrosoftとの協力を拡大し、Hugging Face HubからオープンソースモデルをAzure Machine Learningにもたらすことを発表しました。私たちが共同で新しいHugging Face Hubモデルカタログを作成し、Azure Machine Learning Studio内で直接利用できるようにしました。このカタログには、Hugging Face Hubからの最も人気のあるTransformersモデルが数千点含まれています。この新しい統合により、数クリックでHugging Faceモデルを管理されたエンドポイントにデプロイし、安全かつスケーラブルなAzureインフラ上で実行することができます。

この新しいエクスペリエンスは、昨年Azure Marketplaceで新しい管理アプリとしてAzure Machine Learning Endpointsを立ち上げた際に発表した戦略的パートナーシップを拡大しています。以前のマーケットプレースのソリューションは有望な初期段階でしたが、Azure Machine Learning内でのネイティブな統合を通じてのみ克服できる制約がありました。これらの課題に対処し、お客様のエクスペリエンスを向上させるために、私たちはMicrosoftと協力して、Azure Machine Learning Studio内のHugging Faceユーザーに完全に統合されたエクスペリエンスを提供しています。

20万以上のオープンソースモデルをホストし、1日あたり100万以上のモデルダウンロードを提供しているHugging Faceは、マシンラーニングのための行き先です。しかし、Transformersを本番環境にデプロイすることは今でも課題です。

開発者や組織が直面する主な問題の一つは、本番用の推論APIをデプロイしてスケールさせることがどれだけ困難かということです。もちろん、クラウドベースのAIサービスに頼るという簡単なオプションもあります。これらのサービスは非常に使いやすいですが、通常は限られたモデルセットで動作し、必要なタスクタイプをサポートしていないか、ほとんどカスタマイズできない場合があります。また、クラウドベースのMLサービスや社内プラットフォームを利用すると、完全な制御が可能ですが、より多くの時間、複雑さ、コストがかかります。さらに、多くの企業は、管理者としての制御権限を持つインフラストラクチャ上でのみモデルをデプロイするという厳格なセキュリティ、コンプライアンス、プライバシーの要件を持っています。

「Azure Machine Learning内にネイティブに統合された新しいHugging Face Hubモデルカタログにより、私たちはMicrosoftとのパートナーシップで新たな一歩を踏み出し、エンタープライズ顧客が安全なAzure環境内でリアルタイムの推論のためにHugging Faceモデルを簡単にデプロイできるようにしています。」とHugging Faceのチーフエバンジェリスト、Julien Simonは述べています。

「Hugging FaceのオープンソースモデルをAzure Machine Learningに統合することは、業界トップのAIツールを開発者に提供するという私たちのコミットメントを表しています」とMicrosoftのAzure AI Platformのコーポレートバイスプレジデント、John Montgomeryは述べています。「この協力は、大規模な言語モデルのデプロイプロセスを簡素化するだけでなく、リアルタイムの推論に対して安全でスケーラブルな環境を提供します。これは、Azureインフラの力を背景に、AIのイニシアチブを加速し、革新的なソリューションを迅速かつ安全に市場に提供するためのエキサイティングなマイルストーンです。」

Hugging FaceモデルをAzure Machine Learningにデプロイすることは、これまでにないほど簡単です:

  • Azure Machine Learning StudioでHugging Faceレジストリを開きます。
  • Hugging Faceモデルカタログをクリックします。
  • タスクまたはライセンスでフィルタリングし、モデルを検索します。
  • モデルタイルをクリックしてモデルページを開き、リアルタイムデプロイメントオプションを選択してモデルをデプロイします。
  • Azureのインスタンスタイプを選択し、デプロイをクリックします。

数分でエンドポイントをテストし、推論APIをアプリケーションに追加することができます。これまでにない簡単さです!

サービスの動作をご覧になりたい場合は、以下の画像をクリックしてビデオガイドを開始できます。

Hugging Faceモデルカタログは、Azure Machine Learningが利用可能なすべてのAzureリージョンで、本日よりパブリックプレビューでご利用いただけます。ぜひお試しください。ご意見や質問はフォーラムでお知らせください。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

自撮りがコミュニケーション手段としてどのように使われているかを説明するための研究が進行中であることが明らかになった

「ドイツのバンベルク感情・認知科学大学院の研究者たちは、132人を集めて1,001枚の自撮り写真を調査し、彼らの第一印象を特...

データサイエンス

イメージセグメンテーション:詳細ガイド

画像セグメンテーションとは、コンピュータ(またはより正確にはコンピュータに保存されたモデル)が画像を取り込み、画像内...

機械学習

ProFusion における AI 非正則化フレームワーク テキストから画像合成における詳細保存に向けて

テキストから画像生成の領域は長年にわたって広範に研究され、最近では大きな進歩がなされています。研究者たちは、大規模な...

AI研究

様々な地形でサッカーをプレーするための四脚ロボットシステム

「DribbleBot」は、強化学習を利用して、砂地、砂利、泥地、雪などの様々な地形でサッカーボールを操ることができますまた、...

AI研究

AI研究でα-CLIPが公開されました ターゲテッドアテンションと強化された制御によるマルチモーダル画像分析の向上

さらなる焦点化と制御された画像理解および編集のために、どのようにCLIPを改善できるでしょうか?上海交通大学、復旦大学、...

AI研究

このAI研究は、ITオペレーション向けの新しい大規模言語モデルであるOwlを紹介します

自然言語処理(NLP)と人工知能(AI)の絶え間なく進化する風景の中で、大規模言語モデル(LLM)は、さまざまなNLPのタスクで...