「FinBERTとSOLID原則を活用して感情スコアの正確性を向上させる」

「感情スコアの正確性を向上するためのFinBERTとSOLID原則の活用方法」

以前の実験室のタイトルは「Pythonを使用したニュース感情と株価のパフォーマンス分析NLPアプリケーションの構築」というもので、自動化市場ニュースの感情分析と株価のパフォーマンスとの関連性について触れました。市場の動きは、特に短期間のものは投資家の感情によってよく影響を受けます。感情分析トレーディング戦略の主要な要素の1つは、生のテキストから感情スコアをアルゴリズム的に計算し、それをトレーディング戦略に組み込むことです。感情スコアが正確であれば、アルゴリズムトレーディングによる株価の動向を予測する可能性も高まります。

以前の実験室では、vaderSentimentライブラリを使用しました。今回は、別のNLP候補であるFinBERT NLPアルゴリズムを探求し、Vaderの感情スコアの正確さと比較して、トレーディング戦略のリターンを向上させる意図でそれを評価してみることにしました。

主なデータソースは変わりません。RapidAPI Hubで利用できるYahoo Finance APIを活用して、感情分析のためのニュースデータを取得しました。

この実験ではPythonのJupyter Notebookを開発のプレイグラウンドとして使用しました。Jupyter NotebookではまずYahooから市場データを取得し、JSONのレスポンスをPandasのデータフレームに変換するAPIクラスを呼び出します。このコードは以前の実験室またはGitHubのリポジトリで見つけることができます。次に、データフレームの「Headline」列に対してVaderとFinBERTのMLアルゴリズムを適用し、対応する感情スコアを計算し、各NLP MLアルゴリズムの新しい感情スコア列に追加します。

これらのスコアの手動比較では、FinBERTのMLアルゴリズムの方が正確であることがわかります。

また、次のSOLID原則を取り入れて、重要なコードの再構築も行いました。

  • 単一責任の原則:市場のニュースの準備ロジックはAPIクラスに統合されました
  • 開放閉鎖の原則:VaderとFinBERT固有のロジックはSentimentAnalysisBaseのサブクラスにあります。

この記事があなたのお時間の価値があったことを願っています。コードはこのGitHubリポジトリで見つけることができます。

Happy coding!!!

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

「地震をAIで把握する:研究者が深層学習モデルを公開、予測の精度を向上」

研究チームは地震モデルの現状を変革しようとしています。 カリフォルニア大学バークレー校、カリフォルニア大学サンタクルー...

データサイエンス

ジェネラティブAIを活用したシフトレフトテストの推進

「ジェネラティブAIがシフトレフトテストを向上させ、優れたソフトウェア開発のためのテストケースの自動生成と予測的なバグ...

人工知能

新しい方法:AIによって地図がより没入感あるものになる

AIの進歩により、マップで経路を理解する新しい方法がありますさらに、開発者向けの新しい没入型ツールもあります

AI研究

CMUとプリンストンの研究者がマンバを発表:多様なモードのディープラーニングアプリケーションにおいてトランスフォーマーの効率を超えるSSMアーキテクチャの画期的な進展

現代の機械学習において、ファウンデーションモデルは、大量のデータで事前に学習され、その後に下流のタスクに対して改変さ...

機械学習

焼け落ちた炎:スタートアップが生成AI、コンピュータビジョンを融合して山火事と戦う

カリフォルニアの大規模な山火事によって空がオレンジ色に変わったとき、あるスタートアップはコンピュータビジョンと生成AI...

AIニュース

「ビルドの学び方 — Towards AI コミュニティ ニュースレター第2号」

「最近の数日間、OpenAIのドラマを追っていないと見逃しているよ信じられないことが起こったんだ多くの従業員がOpenAIの理事...