Webスケールトレーニング解放:DeepMindがOWLv2とOWL-STを紹介、未知語彙物体検出の革新的ツール、前例のない自己学習技術によって駆動されます

DeepMindがOWLv2とOWL-STを紹介していますこれらは未知語彙物体検出の革新的なツールであり、前例のない自己学習技術によって駆動されています

オープンボキャブラリーの物体検出は、さまざまな実世界のコンピュータビジョンタスクにおいて重要な要素です。ただし、検出トレーニングデータの入手の制約と、事前学習モデルの脆弱性により、性能が劣り、スケーラビリティの問題が生じることが多いです。

この課題に対処するため、DeepMindの研究チームは最新の論文「Scaling Open-Vocabulary Object Detection」で、最適化されたアーキテクチャであるOWLv2モデルを紹介しています。このモデルはトレーニング効率を改善し、OWL-STセルフトレーニングの手法を組み込んで検出性能を大幅に向上させ、オープンボキャブラリー検出タスクでの最先端の結果を達成します。

この研究の主な目的は、ラベルスペース、注釈フィルタリング、およびオープンボキャブラリー検出セルフトレーニング手法のトレーニング効率を最適化し、限られたラベル付きデータで堅牢でスケーラブルなオープンボキャブラリー性能を実現することです。

提案されたセルフトレーニング手法は、次の3つの主要なステップで構成されています:

  1. チームは既存のオープンボキャブラリー検出器を使用して、WebLIという大規模なウェブ画像テキストペアのデータセットでオープンボックス検出を行います。
  2. 彼らはOWL-ViT CLIP-L/14を使用して、すべてのWebLI画像に境界ボックスの疑似注釈を付けます。
  3. 彼らは、人間による注釈付けされた検出データを使用してトレーニングモデルを微調整し、パフォーマンスをさらに向上させます。

特筆すべきは、研究者がより効果的な検出器を訓練するために、OWL-ViTアーキテクチャのバリアントを使用していることです。このアーキテクチャは、コントラストトレーニングされた画像テキストモデルを利用して画像とテキストのエンコーダを初期化し、検出ヘッドはランダムに初期化されます。

トレーニングの段階では、チームは同じ損失関数を使用し、OWL-ViTアーキテクチャから「疑似ネガティブ」をクエリに追加して、利用可能なラベル付き画像の利用を最大化するためにトレーニング効率を最適化します。

さらに、大規模Transformerトレーニングのために以前に提案された手法を組み込んで、トレーニング効率をさらに向上させます。その結果、OWLv2モデルは、元のOWL-ViTモデルに比べてトレーニングFLOPSを約50%削減し、トレーニングスループットを2倍に加速します。

チームは実証的な研究で、提案手法を以前の最先端のオープンボキャブラリー検出器と比較しています。OWL-ST技術により、LVISの稀なクラスの平均精度(AP)が31.2%から44.6%に向上します。さらに、OWL-STレシピをOWLv2アーキテクチャと組み合わせることで、新たな最先端のパフォーマンスが実現されます。

全体的に、本論文で提案されたOWL-STレシピは、大規模なウェブデータからの弱教師付き学習を活用して検出性能を大幅に向上させ、オープンワールドの位置特定におけるウェブスケールのトレーニングを実現します。この手法は、ラベル付き検出データの希少性による制約に対処し、堅牢なオープンボキャブラリー物体検出のスケーラブルな手法の可能性を示しています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

マルチモーダル言語モデルの解説:ビジュアル指示の調整

「LLMは、多くの自然言語タスクでゼロショット学習とフューショット学習の両方で有望な結果を示していますしかし、LLMは視覚...

データサイエンス

「PandasAIを用いたデータ分析における生成型AIの活用」

「生成モデルを適用することで、PandasAIは人間のようなクエリを理解し、応答することができ、複雑なデータの操作を実行し、...

機械学習

「機械学習モデルを展開する」とはどういう意味ですか?

データサイエンスは、ますます多くの企業を引き付け続ける有望な分野ですが、産業化プロセスに統合されるのに苦労しています...

データサイエンス

データを中心に:Srikanth Velamakanniと共にデータドリブンの組織を築く

Analytics Vidhyaの「データを活用したリーダーシップ(Leading With Data)」は、業界のリーダーが自身の経験、キャリアの道...

データサイエンス

2023年にフォローすべきAI YouTuberトップ15選

人工知能は現在、さまざまな分野で指数関数的な成長を遂げています。その拡大により、この領域は学び、マスターするための数...

機械学習

「Underrepresented Groupsの存在下での学習について」

「ICML 2023で受け入れられた最新の成果をご紹介いたします『Change is Hard A Closer Look at Subpopulation Shift』という...