メトリクス層:すべてのKPI定義の唯一の真実の源

メトリクス層:唯一の真実の源

Midjourneyで生成された画像

なぜメトリクスレイヤーを導入することで、組織内でのデータに基づいた洞察をより強固にすることができるのかを学びましょう!

メトリクスレイヤーは、主要なパフォーマンス指標を一元化し、分析し、直感的な方法で可視化することで、組織が貴重な洞察を引き出し、データに基づいた意思決定を推進するためのフレームワークです。

この記事では、メトリクスレイヤーの重要性、その利点、セマンティクスレイヤーとの主な違い、および成功した導入のための要件について探っていきます。

メトリクスレイヤーとは何ですか?

メトリクスレイヤー(またはメトリクスストア、ヘッドレスBIとも呼ばれます)は、企業がメトリクスの計算方法を統一するためのフレームワークです。組織内で使用されるKPI(またはメトリクス、これらの用語は同義で使用されます)の定義において、真実の唯一の情報源として機能します。

💡 ボーナストリビア:気になるかもしれませんが、「ヘッドレスBI」という用語は、これらのソリューションがAPIに接続してメトリクスにアクセスするためのさまざまなBIツールを可能にすることから派生しています。結果として、ツールを交換する柔軟性を提供しながら、メトリクスの定義の整合性を維持します。

本質的には、メトリクスレイヤーの概念はまったく新しいものではありません。例えば、既にプロジェクトのコードベースをGitでバージョン管理する中央リポジトリに保存しています。同様に、組織のデータウェアハウスやデータレイクは、すべてのデータの真実の唯一の情報源として機能します。同様に、メトリクスレイヤーは組織内で使用されるすべてのKPIの定義の真実の唯一の情報源として機能します。

下の図に示されているように、メトリクスレイヤーはデータウェアハウス(またはデータソースとも言えます)と、これらのメトリクスを消費するすべての関連アプリケーション(ダッシュボード、レポート、AIモデルなど)の間に存在する必要があります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

2023年にAmazonのデータサイエンティストになる方法は?

ほとんどのビジネスは現在、膨大な量のデータを生成し、編集し、管理しています。しかし、ほとんどのビジネスは、収集したデ...

AIテクノロジー

「LXTのテクノロジーバイスプレジデント、アムル・ヌール・エルディン - インタビューシリーズ」

アムル・ヌール・エルディンは、LXTのテクノロジー担当副社長ですアムルは、自動音声認識(ASR)の文脈での音声/音響処理と機...

機械学習

「Prolificの機械学習エンジニア兼AIコンサルタント、ノラ・ペトロヴァ – インタビューシリーズ」

『Nora Petrovaは、Prolificの機械学習エンジニア兼AIコンサルタントですProlificは2014年に設立され、既にGoogle、スタンフ...

機械学習

「機械学習 vs AI vs ディープラーニング vs ニューラルネットワーク:違いは何ですか?」

テクノロジーの急速な進化は、ビジネスが効率化のために洗練されたアルゴリズムにますます頼ることで、私たちの日常生活を形...

AIニュース

OpenAIのCEOであるSam Altman氏:AIの力が証明されるにつれて、仕事に関するリスクが生じる

OpenAIのCEOであるSam Altmanは、特に彼の作品であるChatGPTに関するAIの潜在的な危険性について公言してきました。最近のイ...

人工知能

「マーク・A・レムリー教授による生成AIと法律について」

データサイエンス内で新しい分野が現れ、研究内容が理解しにくい場合は、専門家やパイオニアと話すことが最善です最近、私た...