「3D MRIとCTスキャンに使用するディープラーニングモデルは何ですか?」

What is the deep learning model used for 3D MRI and CT scans?

3D医用画像処理の問題を解決するための機械学習の使い方のガイド。

このような深い洞察力や、週のトップML論文、求人情報、実際の経験からのMLのヒント、研究者やビルダーからのMLのストーリーなど、さらに多くの情報を受け取るには、こちらのニュースレターに参加してください。

参加すると、以下の2つの特典があります:

  • 機械学習の求人市場で求められる知識を理解するためのMLジョブのチェックリスト。
  • コンピュータビジョンのための無料の4.5時間のTensorflow入門コースへのリンク。

はじめに

医用画像データを扱う際には、時にはその3Dの側面に対処する必要があります。

これは特にDICOMシリーズデータを扱う場合に当てはまります。このシナリオでは、スキャンまたは特定の体の一部を形成するいくつかのDICOMスライスがあります。

では、このタイプのデータに対してどのようにディープラーニングソリューションを構築するのでしょうか? この記事では、3D医療データ上でディープラーニングモデルを訓練するために使用できる6つのニューラルネットワークアーキテクチャを紹介します。

各ニューラルネットワークについて、コードと元の論文を共有するので、それらの動作をさらに深く理解することができます。

3D医療画像のためのディープラーニングモデル

3D U-Net:

U-Netアーキテクチャは、医療画像セグメンテーションのための強力なモデルです。 3D U-Netは、クラシックなU-Netモデルを3Dセグメンテーションに拡張したものです。 エンコーディング(ダウンサンプリング)パスとデコーディング(アップサンプリング)パスから構成されます。 エンコーディングパスは入力画像の文脈を捉え、デコーディングパスは正確な位置特定を可能にします。 3D U-Netは、体積画像の3Dの性質を非常に効果的に処理します。

コードはこちらで確認できます。

元の論文はこちらで読むことができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

AWSを使用したジェネレーティブAIを使用したサーバーレスイメージ生成アプリケーション

このチュートリアルでは、Amazon Bedrockを使用してGoで画像生成ソリューションを構築し、AWS CDKを使用して展開する方法を学...

機械学習

「ChatGPT AI-1の解放:高度なLLMベースのシステムの構築」

導入 この記事では、チャットGPT AI-1を使ったLLM(大規模言語モデル)に基づくシステムの構築について説明します。読者がプ...

人工知能

開発者の皆さんへ:ダイアグラムはそんなに複雑である必要はありません

「図表は有用な情報を含んでいるだけでなく、読みやすいものでなければなりませんそして、作成するのも簡単で、楽しいことが...

機械学習

「AIの進化と生成AIへの道のりとその仕組み」

この記事では、AI/MLの基礎、その使用方法、生成AIの進化、Prompt Engineering、およびLangChainについて説明しています

データサイエンス

Rendered.aiは、合成データの生成にNVIDIA Omniverseを統合します

Rendered.aiは、プラットフォームとして提供される合成データ生成(SDG)により、開発者、データサイエンティスト、その他の...

機械学習

チューリングのミル:AIスーパーコンピューターが英国の経済エンジンを加速

産業革命の発祥地であるイギリスが、次なる革命に巨額な投資を行うことを発表しました。 イギリス政府は、世界最速のAIスパー...