「3D MRIとCTスキャンに使用するディープラーニングモデルは何ですか?」

What is the deep learning model used for 3D MRI and CT scans?

3D医用画像処理の問題を解決するための機械学習の使い方のガイド。

このような深い洞察力や、週のトップML論文、求人情報、実際の経験からのMLのヒント、研究者やビルダーからのMLのストーリーなど、さらに多くの情報を受け取るには、こちらのニュースレターに参加してください。

参加すると、以下の2つの特典があります:

  • 機械学習の求人市場で求められる知識を理解するためのMLジョブのチェックリスト。
  • コンピュータビジョンのための無料の4.5時間のTensorflow入門コースへのリンク。

はじめに

医用画像データを扱う際には、時にはその3Dの側面に対処する必要があります。

これは特にDICOMシリーズデータを扱う場合に当てはまります。このシナリオでは、スキャンまたは特定の体の一部を形成するいくつかのDICOMスライスがあります。

では、このタイプのデータに対してどのようにディープラーニングソリューションを構築するのでしょうか? この記事では、3D医療データ上でディープラーニングモデルを訓練するために使用できる6つのニューラルネットワークアーキテクチャを紹介します。

各ニューラルネットワークについて、コードと元の論文を共有するので、それらの動作をさらに深く理解することができます。

3D医療画像のためのディープラーニングモデル

3D U-Net:

U-Netアーキテクチャは、医療画像セグメンテーションのための強力なモデルです。 3D U-Netは、クラシックなU-Netモデルを3Dセグメンテーションに拡張したものです。 エンコーディング(ダウンサンプリング)パスとデコーディング(アップサンプリング)パスから構成されます。 エンコーディングパスは入力画像の文脈を捉え、デコーディングパスは正確な位置特定を可能にします。 3D U-Netは、体積画像の3Dの性質を非常に効果的に処理します。

コードはこちらで確認できます。

元の論文はこちらで読むことができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

アーサーがベンチを発表:仕事に最適な言語モデルを見つけるためのAIツール

ニューヨーク市の通りでは、AIの新興スタートアップ「Arthur」が機械学習の世界で話題をさらっています。生成型AIに関するブ...

データサイエンス

データから真実を解読する:大きな言語モデルが真実をモデル化するためにパーソナを使用する方法

大型言語モデル(LLM)の導入により、人工知能のサブフィールドである自然言語処理(NLP)は大幅に進化し改善されています。...

データサイエンス

十年生のためのニューラルネットワークの簡略化

複雑なニューラルネットワークの概念を、コスト関数、ニューロン、バックプロパゲーション、重みとバイアスを非技術的で楽し...

機械学習

「JavaとGradleを使用したAIアプリケーションの開発」

実際のコード例を通じて、Deeplearning4j、Weka、そしてEncogなどの人気のあるライブラリを使用して、JavaとGradleを使ったAI...

AIニュース

「英国初のAIカメラ、わずか3日で300人の犯罪者を摘発」

イギリスの道路安全の風景は、フリースタンディングの人工知能(AI)道路安全カメラの登場によって革命的な変革を遂げていま...

機械学習

このAIニュースレターがあれば、あなたは全てが揃った!#70

今週のAIでは、特に2つの新しいエージェントモデルのリリースに興味を持っていましたNvidiaは、複雑なタスクを自律的に実行す...