UC San Diegoの研究者たちは、EUGENeという使いやすいディープラーニングゲノミクスソフトウェアを紹介します

「UC San Diegoの研究者が手軽なディープラーニングゲノミクスソフトウェアEUGENeを紹介」

ディープラーニングは生活のあらゆる分野で使用されています。あらゆる領域でその有用性があります。バイオメディカル研究に大きな影響を与えています。それは少しの助けでタスクをよりよくこなすことができるスマートなコンピュータのようなものです。それは科学者が医学や疾患を研究する方法を変えました。

それはゲノミクスにおいても影響力があり、DNAの組織化や個々の細胞内で遺伝子が活性化または非活性化されるプロセスを調べる生物学の一分野です。

カリフォルニア大学サンディエゴ校の研究者たちは、さまざまなゲノミクスプロジェクトに迅速かつ容易に適応できる新しいディープラーニングプラットフォームを開発しました。カリフォルニア大学サンディエゴ医学部のハンナ・カーター准教授は、すべての細胞が同じDNAを持っているが、DNAがどのように発現されるかが細胞の見た目や働きに変化をもたらすと述べています。

EUGENeは、ゲノミクスのディープラーニングワークフロー内の重要な機能をサポートするためのモジュールとサブパッケージを使用しています。これらの機能には、さまざまなファイル形式からのシーケンスデータの抽出、変換、およびロード(1)、さまざまなモデルアーキテクチャのインスタンス化、初期化、およびトレーニング(2)、およびモデルの振る舞いの評価と解釈(3)が含まれます。

ディープラーニングは遺伝的変異を支配する多様な生物学的プロセスに関する貴重な洞察を提供する潜在能力を持っていますが、その実装にはコンピュータサイエンスのより広範な専門知識を必要とするという課題があります。研究者たちは、ゲノミクス研究者がディープラーニングデータ解析を効率化し、生データからの予測の抽出をより簡単かつ効率的に行うことを可能にするプラットフォームを開発することを目指していると述べています。

全ゲノムの約2%が特定のタンパク質をエンコードする遺伝子であり、残りの98%はその機能がほとんど不明であるためジャンクDNAと呼ばれていますが、特定の遺伝子が活性化されるタイミング、場所、および方法を決定する上で重要な役割を果たしています。これらの非コーディングゲノム領域の役割を理解することは、ゲノミクス研究者の最優先事項でした。ディープラーニングはこの目標を達成するための強力なツールであることが証明されていますが、効果的に使用することは難しいです。

この研究の第一著者であるカーターラボの博士課程の学生であるアダム・クリーは、多くの既存プラットフォームが多くの時間を要し、データの整理が必要であると述べました。彼は、多くのプロジェクトがリサーチャーにスクラッチからの作業を求め、この領域に興味を持つすべての研究室で容易に利用できる知識がすぐに利用可能であるとは限らない専門知識が必要です。

その効果を評価するために、研究者たちはEUGENeを使用して、さまざまなシーケンスデータタイプを使用した3つの以前のゲノミクス研究の結果を複製しようとしました。過去には、このようなさまざまなデータセットの分析には数多くの異なる技術プラットフォームの統合が必要でした。

EUGENeは素晴らしい柔軟性を示し、すべての調査の結果を効果的に再現しました。この柔軟性は、プラットフォームがさまざまなシーケンスデータを管理し、ゲノミクス研究のための適応性のあるツールとしての潜在能力を示しています。

EUGENeは異なるDNAシーケンスデータタイプに適応性を示し、さまざまなディープラーニングモデルをサポートしています。研究者たちは、EUGENeを単細胞シーケンスデータを含むさまざまなデータタイプを包括する範囲に広げることを目指しており、EUGENeを世界中の研究グループに利用可能にする計画です。

カーターは、このプロジェクトの協力の可能性に熱意を表明しました。彼は、このプラットフォームをより良くするためには、人々がプラットフォームを使用するほど良くなるということが、ディープラーニングが急速に進化し続ける中で重要であると述べました。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「GoogleがCloud TPU v5pとAIハイパーコンピューターを発表:AI処理能力の飛躍」

Googleは、AIハイパーコンピュータと呼ばれる画期的なスーパーコンピューターアーキテクチャと共に、テンサープロセッシング...

データサイエンス

「データサイエンティストには試してみるべきジェンAIプロンプト」

「データサイエンティストのためのGen AIの力を探求する以下には、データサイエンティストを支援するためのいくつかの必須のG...

機械学習

Amazon Personalize Next Best Actionを使用して、ユーザーにアクションを推奨することでブランドの忠誠心を構築します

Amazon Personalizeは、個別のユーザーに提案する最適なアクションを決定し、ブランドのロイヤルティとコンバージョンを向上...

機械学習

「Amazon SageMakerに展開された生成AIを使用して創造的な広告を生成する」

創造的な広告は、生成AI(GenAI)によって革命を起こす可能性がありますGenAIモデルを再トレーニングし、テキストのプロンプ...

AI研究

マイクロソフトAI研究チームが提案する「AltFreezing:より一般的な顔の偽造検出のための新しいトレーニング戦略」

最近、顔生成や操作ツールの急速な発展のおかげで、顔のビデオが提供するアイデンティティや品質は非常に簡単に変更および操...

AI研究

「研究によると、一部の文章作成タスクにおいてChatGPTは労働者の生産性を向上させることがわかりました」

MITの研究者による新しいレポートは、生成型AIが特定のライティング課題に取り組む労働者を支援する可能性を強調しています