UCバークレーの研究者たちは、Gorillaという名前の、GPT-4を上回るAPIコールの記述において、Finetuned LLaMAベースのモデルを紹介しました

UCバークレーの研究者は、GPT-4を超えるAPIコールの記述のために、Finetuned LLaMAベースのモデル(Gorilla)を紹介しました

人工知能の分野における最近の大きな進歩は、大規模言語モデル(LLM)の導入です。これらのモデルは、自然言語処理(NLP)や自然言語理解(NLU)を最大限に活用するために、言語をより簡潔に理解することを可能にします。これらのモデルは、テキスト要約、質問応答、コンテンツ生成、言語翻訳など、あらゆるタスクで優れたパフォーマンスを発揮しています。これらのモデルは、論理的な推論を含む複雑なテキストのプロンプトを理解し、データのパターンや関係を特定することができます。

言語モデルは、さまざまなタスクで驚異的なパフォーマンスを示し、近年、その能力を大幅に向上させてきましたが、効率的なAPI呼び出しを行うことは依然として困難です。有名なLLMであるGPT-4でも、正確な入力引数を生成するのは困難であり、適切でないAPI呼び出しを頻繁に推奨します。この問題に対処するために、バークレーとマイクロソフトリサーチの研究者は、GPT-4を上回るAPI呼び出しの生成能力を持つ、Gorillaというfinetuned LLaMAベースのモデルを提案しました。Gorillaは、特定の活動を実行するために外部ツールと連携するLLMの能力を向上させるのに役立ちます。

研究者のチームは、APIBenchデータセットも作成しました。このデータセットは、重複する機能を持つAPIの大規模なコーパスで構成されています。このデータセットは、TorchHub、TensorHub、HuggingFaceなどの公開モデルハブから収集されました。TorchHubとTensorHubのすべてのAPIリクエストが各APIに含まれ、HuggingFaceの各タスクカテゴリにおける上位20モデルが選択されました。さらに、自己指導法を使用して、各APIに対して10の架空のユーザークエリプロンプトを生成しました。

このAPIBenchデータセットとドキュメント検索を使用して、研究者はGorillaをfinetuneしました。7兆パラメータのGorillaモデルは、APIの機能の正確さや幻覚的なミスを低下させる点でGPT-4を上回ります。ドキュメント検索ツールとの効果的な統合により、LLMがより正確にツールを使用できる可能性が示されています。Gorillaの改善されたAPI呼び出し生成能力と必要に応じてドキュメントを変更する能力は、モデルの結果の適用性と信頼性を向上させます。この開発は重要であり、定期的に更新されるドキュメントに追いつくことができるため、ユーザーにより正確かつ最新の情報を提供します。

研究者によって共有された例の1つでは、Gorillaが正しくタスクを認識し、完全に資格のあるAPI結果を提供する様子が示されています。モデルによって生成されたAPI呼び出しは、GPT-4が仮想のモデルに対するAPIリクエストを生成していることを示し、タスクの理解力の不足を示しています。一方、クロードは適切なライブラリを選択せず、正しいリソースを認識する能力の不足を示しました。これに対して、Gorillaはタスクを正しく認識します。したがって、GorillaはGPT-4やクロードとは異なり、API呼び出しの作成が正確であり、その性能とタスク理解力を示しています。

結論として、Gorillaは言語モデルのリストにおいて重要な追加です。それはAPI呼び出しの作成の問題にも対応しています。その能力により、幻覚や信頼性に関連する問題を軽減することができます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

人工知能の未来を形作る:進歩と革新のための迅速なエンジニアリングの重要性

ChatGPTはリリース当日から話題になっています。革新的なチャットボットを既に100万人以上のユーザーが利用しています。ChatG...

機械学習

ディープラーニングを使用した自動音楽生成

歴史的に、音楽は人間の芸術的な努力の強力な指標として機能してきました。現在、伝統的な音楽の構築と計算手法の融合は特に...

機械学習

マイクロソフトが「TypeChat」をリリース:型を使用して自然言語インターフェースを簡単に構築できるAIライブラリ

MicrosoftのTypeChatライブラリは、大規模な言語モデル(LLM)に基づいたタイプベースの自然言語インターフェースの作成を容...

AI研究

MITの研究者たちは、SmartEMというAI技術を開発しましたこの技術は、リアルタイムの機械学習を画像処理にシームレスに統合することで、電子顕微鏡を次のレベルに進化させます

動物の脳の複雑なネットワークを理解することは、特にアルツハイマーのような疾患を研究する際に、科学者にとって大きな課題...

機械学習

このAI論文は、概念関連伝播(CRP)を用いて、「どこ」や「何」を解き明かすための深層学習モデルの理解に新たなアプローチを提案しています

“`html 機械学習と人工知能の分野は非常に重要になっています。日々進歩している新たな技術があります。この領域はあら...

AIニュース

「センチネル衛星がメタンの超排出源をマッピング」

国際的な研究チームが、機械学習を使用して、衛星データからメタンの超放出プルームを自動的に検出するアルゴリズムを開発し...