フランス国立科学研究センター(CNRS)におけるAI研究は、ノイズ適応型のインテリジェントプログラマブルメタイメージャーを提案しています:タスク固有のノイズ適応型センシングへの適切なアプローチです

The AI research at the French National Center for Scientific Research (CNRS) proposes a noise-adaptive intelligent programmable metaimager an appropriate approach to task-specific noise-adaptive sensing.

フランスのCNRSの研究者たちは、ノイズ適応型インテリジェントプログラマブルメタイメージャーを開発しました。センシングシステムは、タッチレスな人間コンピュータインターフェース、自動運転車両、および環境的にサポートされる医療など、私たちの生活のさまざまな側面でますます使用されています。しかし、これらのシステムはしばしば関連性のある情報であるかどうかにかかわらず、すべての情報を収集する傾向があるため、知能に欠けています。これにより、プライバシーの侵害や、データの処理における時間、労力、計算リソースの浪費が生じる可能性があります。

しかし、実際のアプリケーションにおける計測手順は、さまざまな種類のノイズの影響を受けます。すべての計測にはノイズが付随しています。特に電磁信号を控えめに保つ必要がある屋内環境では、信号対ノイズ比が低くなる場合があります。前の研究を進めるために、フランスのCNRSの研究者たちは、特定の情報抽出タスク(例:物体認識)だけでなく、さまざまな種類やレベルのノイズにも適応するインテリジェントなプログラマブル計算メタイメージャーを開発しました。

ある種のノイズと強度は、計測プロセスに必ず影響を与えます。私たちは、ノイズの種類と量が、スマートでプログラマブルなメタイメージャーが画像からタスク固有の情報を効果的に抽出するために使用すべき最適な連続的な照明パターンに影響を与えるという仮説を立てます。これは、シングルトランスミッターシングルディテクターマルチショットプログラマブル計算イメージングシステムと見なされます。これらのシステムは特にマイクロ波ドメインで重要であり、高価なトランシーバーをプログラマブルなメタサーフェスアパーチャで置き換えることができ、単一の無線周波数チェーンから連続的な波面を合成することができます。

研究者によると、遅延制約とノイズがインテリジェントなマルチショットプログラマブルメタイメージャーに与える影響を詳細に探索しています。研究者たちは、一般的な物体認識の問題を研究し、それに対してマイクロ波計算プログラマブルメタイメージャーシステムを提案し、その理論を検証するために使用しました。これらのシステムは、地球観測、屋内監視などに使用することができます。

彼らのモデルでは、マイクロ波ダイナミックメタサーフェスアンテナ(DMA)がシーンに一連の連続波面を送信するために単一のトランスミッターを使用し、2番目のDMAが反射波を一貫して収集するために単一のディテクターを使用しました。ノイズを伴った将来のデジタル処理ステージとノイズを伴ったプログラマブルな物理計測プロセスで構成される微分可能なエンドツーエンドの情報フローパイプラインが開発されました。

このタスク固有のエンドツーエンドのトレーニング可能な物理パラメータとトレーニング可能なデジタルパラメータの共同最適化により、計測プロセスにはタスク認識能力が与えられ、タスクに関連するアナログドメインの情報と関連しない情報を区別することができます。

科学者たちは、シーンから抽出できる情報量が遅延制約および/またはノイズによって制約される場合、このプログラマブルメタイメージャーは、ランダムな構成を持つ従来の圧縮センシングよりも優れたパフォーマンスを発揮することを見出しました。

信号に独立したノイズタイプと信号依存性のノイズタイプの両方において性能の向上が観察されました。この手法の「ブラックボックス」的な性質にもかかわらず、学習した照明パターンの「マクロ的」な側面、特に相互の重なりおよび強度には直感的にアクセスできることがわかりました。

研究者によれば、ノイズの種類と量を自動的に認識し、それに応じてDMAの設定を変更するシステムに移行することは簡単です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

もし芸術が私たちの人間性を表現する方法であるなら、人工知能はどこに適合するのでしょうか?

MITのポストドクターであるジヴ・エプスタイン氏(SM '19、PhD '23)は、芸術やその他のメディアを作成するために生成的AIを...

AIニュース

「Amazon Translateは、翻訳の正確性と流暢さを向上させるためにカスタム用語集を強化しました」

「Amazon Translate」は、高速で高品質かつ手頃な価格でカスタマイズ可能な言語翻訳を提供するニューラル機械翻訳サービスで...

機械学習

人間のフィードバックからの強化学習(RLHF)

たぶん、あなたはこの技術について聞いたことがあるかもしれませんが、完全には理解していないかもしれません特にPPOの部分に...

機械学習

「MozillaがFirefoxに偽レビューチェッカーAIツールを導入」

オンラインショッピングの広大な景色の中で、本物の製品レビューを捉えることはますます困難な課題となっています。消費者は...

機械学習

「コンテキストの解読:NLPにおける単語ベクトル化技術」

「あなたは自国から遠く離れた新しい町に引っ越しましたそこで偶然、コーヒーショップで誰かにぶつかりましたあなたと同じく...

AI研究

「マイクロソフトの研究者がSpeechXを紹介:ゼロショットのTTSと様々な音声変換タスクに対応する多目的音声生成モデル」

テキスト、ビジョン、音声など、複数の機械学習アプリケーションは、生成モデルの技術において急速かつ重要な進展を遂げてき...