Pythonでの機械学習のためのテキストの前処理−自然言語処理

自然言語処理のためのPythonによるテキスト前処理と機械学習

キリル・ドブレフによる写真

一部の一般的なテキスト前処理の技術Pythonの例とともに

このソーシャルメディアとオンラインビジネスの時代では、テキストデータが様々な場所から来ます。 しかし、テキストデータの取り扱いはトリッキーです。 生のテキストにはあらゆる種類の不純物、不要なノイズ、綴りの間違いなどが含まれる場合があります。 そのため、テキストデータのモデリングに入る前に、適切な前処理を行う必要があります。

この記事では、テキストデータを機械学習向けに準備するための一般的なテキスト前処理の手法に取り組みます。

数値の削除

テキスト中の数値は、機械学習モデルにとって欺瞞的な場合があります。 なぜなら、結局のところ、テキストは数値として変換する必要があるからです。 各テキストは数字として変換されます。 テキストに再び数値が含まれている場合、それらの数値には不必要に干渉する可能性があります。 そのため、数値の削除は役に立ちます。

ここでは、正規表現を使用して数値を削除しました。 そのため、まず ‘re’をインポートする必要がありました。

 import re  text = "クラスAには35人の学生がいます。 クラスBには29人の学生がいますが、全員が数学が得意です。"res = re.sub(r'\ d + '、 ''、 text)res 

出力:

 'クラスAには学生がいます。 クラスBには学生がいますが、全員が数学が得意です。' 

すべての数値がテキストからなくなりました。

余分なスペースの削除

これはまた別の面白い問題です。 時には、生データに先頭や末尾に余分なスペースが入ってくることがありますが、問題には見えません。 しかし、問題を引き起こす可能性があります。 余分なスペースがある場合、同じ単語が2つの異なる単語として表示される場合があります。 たとえば、モデルを開発する際に単語「曲」の先頭に余分なスペースを追加すると、スペースのみの違いから「音楽」だけでなく別の単語と見なされる可能性があり、モデルのパフォーマンスに悪影響を与えるかもしれません。

 st = "結果は素晴らしかった "st.strip() 

出力:

 '結果は素晴らしかった' 

先頭と末尾のスペースがなくなりました。

私はKaggleからtwitter.csvデータを使用しました…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

なぜBankrateはAI生成記事を諦めたのか

1月に、Bankrateとその姉妹サイトであるCNETがAIによって生成された数百の記事を公開することで話題となりました彼らは慎重に...

機械学習

「大規模言語モデルの微調整方法:ステップバイステップガイド」

2023年、アルパカ、ファルコン、ラマ2、およびGPT-4のような大規模言語モデル(LLM)の台頭は、人工知能の民主化の傾向を示し...

AI研究

シンガポール国立大学の研究者たちは、ピクセルベースと潜在ベースのVDMを結びつけたハイブリッド人工知能モデルであるShow-1を提案しますこれはテキストからビデオを生成するものです

シンガポール国立大学の研究者たちは、Show-1というハイブリッドモデルを導入しました。テキストからビデオを生成するための...

データサイエンス

「タイムシリーズの拡張」

「拡張機能は、コンピュータビジョンパイプラインの領域において欠かせない要素となってきましたしかし、タイムシリーズなど...

データサイエンス

なぜハイプが重要なのか:AIについて現実的な考え方が必要

ELIZAはChatGPTにいくつかの類似点を持つ初期のチャットボットでしたなぜこの興奮が重要なのでしょうか?船を発明すると、船...

人工知能

宇宙におけるAIの10の使用例

イントロダクション 何百年もの間、人々は夜空を見つめ、好奇心を抱いてきました。現在でもその興味は輝き続けています。宇宙...