ReLoRa GPU上で大規模な言語モデルを事前学習する

ReLoRa GPUで言語モデルを事前学習する

複数回のリセットを行うLoRa

The ReLoRa framework — Image by the author

2021年、HuらはLLMsのための低ランクアダプタ(LoRa)を提案しました。この方法は、高ランクネットワーク(LLMsの元のパラメータ)を凍結させたまま、わずかな追加パラメータ(低ランクネットワーク)のみをトレーニングすることで、大規模な言語モデル(LLMs)の微調整のコストを大幅に削減します。

LoRaでは、既存の事前学習モデルを微調整する必要があります。つまり、低ランクの制約により、良いLLMをゼロから事前学習することはできません。これにより、事前学習はほとんどの個人や組織にとって手の届かないものとなります。

このコストを削減するために、Lialinら(2023年)はReLoRaを提案しています。これは、LoRaの改良版であり、ゼロからLLMsを事前学習することができます。

この記事では、まずReLoRaの動作原理を説明します。次に、ReLoRaを説明する科学論文で発表された結果を分析し、コメントします。最後のセクションでは、コンピュータ上でReLoRaを設定して実行する方法を示します。

ライセンスに関する注意事項: ReLoRaに関するarXivで発表された科学論文は、CC BY 4.0ライセンスの下で配布されています。ReLoRaのソースコードはGitHubで公開され、商用利用が許可されるApache 2.0ライセンスで配布されています。

ReLoRa:低ランクから高ランクネットワークへ

ReLoRaの動作原理を理解するためには、まずLoRaを詳しく見てみる必要があります。

LoRaは、トレーニング後に元の凍結された高ランクネットワークにマージされる2つの異なるセットの新しいトレーニング可能なパラメータAとBを追加することで機能します。

明らかなことかもしれませんが、AとBの合計のランクは、それぞれの個々のランクの合計よりも高くなります。これを以下のように形式化することができます:

LoRaはこれらの2つのパラメータセットのみをトレーニングしました。ただし、複数回リセットしてトレーニングし、元の高ランクネットワークに連続してマージすることができれば、ネットワークの総ランクを時間とともに増やすことができます。つまり、より大きなモデルを得ることができます。

なぜLoRaはこれらのリセットを行わないのでしょうか?

なぜなら、これらのリセットを有益にするためにはいくつかの重要な障害が存在するからです…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

AIが私のいとこのような運動障害を持つ人々を支援する方法

5年前、私のいとこはまさに人生の最盛期にある美しい若い女性として、恐ろしい試練に直面しました彼女は残虐に襲われ、外傷性...

データサイエンス

『nnU-Netの究極ガイド』

「画像セグメンテーションの主要なツールであるnnU-Netについて、詳細なガイドに深く入り込んでください最先端の結果を得るた...

AIテクノロジー

フリートテクノロジーのためのAI駆動エッジインサイトの実装

「エッジインサイトをフリートテクノロジーに導入し、効率と安全性を向上させ、ドライバーとフリートマネージャーにほぼリア...

AIニュース

「FacebookとInstagramにて、Metaが新しいAI機能を発表」

人工知能において注目すべき進展が詰まった2022年において、Metaは革新的な進歩を遂げ、確実にリードを取っています。仮想ア...

機械学習

GPT-4の主な6つの利用事例

GPT-4の画期的な応用を、コンテンツ制作から医療に至るまで、さまざまな業界で探求してください6つのユースケースでAIの変革...

機械学習

RayはNVIDIA AIとの協業により、開発者が製品向けのLLMを構築、調整、トレーニング、スケールアップするのを支援します

大規模言語モデルの開発は、NVIDIAとAnyscaleのコラボレーションにより、超音速の速さに達する予定です。 Anyscaleは、急速に...