「Phi-2解放:コンパクトで輝かしい言語モデル」

「Phi-2解放:コンパクトで輝く言語モデル」

最近、Microsoft ResearchのMachine Learning Foundationsチームは、彼らの小さな言語モデル(SLM)のスイートの最新バージョンであるPhi-2を発表しました。パラメーター数が27億に上るPhi-2は、驚くほどコンパクトなフレームワーク内で非凡な推論力と言語理解能力を発揮し、期待を裏切るものです。

Phi-2謎解き

Phi-2の登場は、その前身であるPhi-1とPhi-1.5の成功に続くものです。研究チームは、言語モデルのスケーリングにおけるユニークなアプローチを開拓し、サイズだけがすべてではないことを示しました。トレーニングデータの品質と革新的なスケーリング技術に焦点を当てることで、Phi-2は自身よりも25倍も大きいモデルに劣らず、さらに優れたパフォーマンスを発揮します。

品質が数量を凌駕する

Phi-2の成功の要点は、チームがトレーニングデータの品質に重点を置いていることにあります。以前の研究「テキストブックが必要なすべて」に続いて、研究者たちは合成データセットと厳選されたウェブデータを組み合わせてモデルに常識的な推論と一般的な知識を植え付けることを目指しました。この緻密なデータキュレーションのアプローチが、Phi-2の優れたパフォーマンスへの道を開きました。

革新的なスケーリング技術

研究チームは、Phi-1.5モデルの知識をPhi-2に埋め込むという新たな知識転送アプローチを採用しました。これにより、トレーニングの収束が加速されるだけでなく、Phi-2のベンチマークスコアにおいて明確な性能向上が示されました。この革新的なスケーリング技術によって、Phi-2は他と一線を画し、戦略的なモデル開発の力を示しています。

Phi-2のトレーニングの歩み

Phi-2は、次の単語予測目標を持つTransformerベースのモデルであり、合成データセットとウェブデータから合計14兆トークンに対してトレーニングを行いました。驚くべきことに、96台のA100 GPUでわずか14日間のトレーニングを実施し、効率性と効果性を示しました。Phi-2は、人間のフィードバックからの強化学習や命令による微調整を行っていないにもかかわらず、有害性や偏見に関して優れた振る舞いを示しています。

Phi-2の評価での勝利

Phi-2の優れた性能は、ミストラルやラマ2などのより大きなモデルを凌駕し、コーディングや数学などのマルチステップの推論タスクで卓越した成績を収めています。驚くべきことに、最近発表されたGoogleのジェミニナノ2を上回り、そのサイズの小ささにもかかわらず優れた性能を発揮します。研究者たちはモデルの評価における課題を認識していますが、Phi-2が一貫して自らの能力を証明できる具体的な使用例でのテストの重要性を強調しています。

私たちの考え

Phi-2の優れたパフォーマンスは、大きなモデルが常に良い結果を意味するという常識に挑戦しています。そのコンパクトなサイズは、研究や開発の新たな可能性を開き、機械的解釈可能性、安全性の向上、およびさまざまなタスクにおける微調整実験を探求するための理想的なプレイグラウンドとなります。Microsoft Researchは、自然言語処理の未来を新たな情熱で探求するために、Phi-2を活用して限界を押し広げる姿勢を示しています。

Phi-2は、人工知能と言語理解の領域において、小さな言語モデルに宿る驚くべき力を証明し、効率性と効果性の新たな時代を切り開いています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

エロン・マスクのxAIがOpenAIのChatGPTに挑戦します

ビジョン溢れる億万長者であるイーロン・マスクは、電気自動車、宇宙探査、ソーシャルメディアなどの事業を手掛ける人物で、...

AIニュース

AIがオンエア中:世界初のRJボット、アシュリーに会おう

オレゴン州ポートランドに拠点を置く人気ラジオ局、Live 95.5は、Futuri MediaのRadioGPTテクノロジーによって動かされる世界...

データサイエンス

大型言語モデル、StructBERT ー 言語構造を事前学習に組み込む

初めて登場して以降、BERTは感情分析、テキストの類似度、質問応答など、さまざまなNLPタスクで驚異的な結果を示してきました...

AIニュース

元アップル社員が生成型AIをデスクトップにもたらす方法

常に進化するテックのランドスケープの中で、元Appleの従業員であるコンラッド・クレイマー、キム・ベベレット、アリ・ウェイ...

AI研究

テンセントAIラボの研究者たちは、テキスト対応の画像プロンプトアダプタ「IP-Adapter」を開発しました:テキストから画像への拡散モデルのためのアダプタです

「リンゴ」と言えば、あなたの頭にすぐにリンゴのイメージが浮かびます。私たちの脳の働き方が魅力的であるように、生成AIも...

AI研究

「生成AIが新しいタンパク質の構造を想像する」

MITの研究者たちは、「FrameDiff」という計算ツールを開発しましたこのツールは生成AIを使用して新しいタンパク質構造を作り...