マイクロソフトの研究者は、テキスト重視の画像の機械読み取りのためのマルチモーダルリテラシーモデルであるKosmos-2.5を紹介しました

Microsoftの研究者は、テキスト重視の画像の機械読み取りのためのKosmos-2.5というマルチモーダルリテラシーモデルを紹介しました

近年、大規模言語モデル(LLM)が人工知能の中で注目を浴びていますが、これまで主にテキストに焦点を当て、視覚的な内容の理解に苦労してきました。多モーダル大規模言語モデル(MLLM)は、このギャップを埋めるために登場しました。MLLMは、ビジュアルとテキストの情報を単一のTransformerベースのモデルで組み合わせ、両方のモダリティからコンテンツを学習・生成することができるため、AIの能力の大幅な向上をもたらします。

KOSMOS-2.5は、統一されたフレームワーク内で2つの密接に関連する転写タスクを処理するために設計された多モーダルモデルです。最初のタスクは、空間認識を持つテキストブロックを生成し、テキストリッチな画像内のテキスト行に空間座標を割り当てることです。2番目のタスクは、さまざまなスタイルと構造を捉えたマークダウン形式の構造化されたテキスト出力を生成することに焦点を当てています。

両方のタスクは、共有のTransformerアーキテクチャ、タスク固有のプロンプト、および適応可能なテキスト表現を利用した単一のシステムで管理されています。モデルのアーキテクチャは、ViT(Vision Transformer)に基づくビジョンエンコーダと、Transformerアーキテクチャに基づく言語デコーダを組み合わせ、リサンプラモジュールを介して接続されています。

このモデルを訓練するためには、テキストが多い画像の大規模なデータセットで事前トレーニングを行います。このデータセットには、境界ボックス付きのテキスト行とプレーンなマークダウンテキストが含まれています。このデュアルタスクトレーニングのアプローチにより、KOSMOS-2.5の全体的な多モーダルリテラシー能力が向上します。

上記の画像は、KOSMOS-2.5のモデルアーキテクチャを示しています。KOSMOS-2.5の性能は、エンドツーエンドのドキュメントレベルのテキスト認識と、マークダウン形式の画像からのテキスト生成の2つの主要なタスクで評価されます。実験結果は、テキスト集中の画像タスクの理解力における強力なパフォーマンスを示しています。さらに、KOSMOS-2.5は、フューショットおよびゼロショット学習を含むシナリオで有望な能力を発揮し、テキストリッチな画像を扱う実世界のアプリケーションにおいて、多目的なツールとなります。

これらの有望な結果にもかかわらず、現在のモデルにはいくつかの制限があり、貴重な将来の研究方向を提供しています。たとえば、KOSMOS-2.5は現在、テキストの空間座標を入力と出力として事前トレーニングしているにもかかわらず、自然言語の指示を使用してドキュメント要素の位置を細かく制御することはサポートしていません。広範な研究領域では、モデルのスケーリング能力の開発をさらに進めるという重要な方向性があります。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Related articles

Discover more

機械学習

ロボットが「グリップ」のアップグレードを取得:AO-Graspがロボットに物を落とさない技術を教えます!

近年、ロボットは製造業から医療まで、様々な産業でますます使用されています。しかし、彼らのタスクを遂行する効果は、環境...

機械学習

コードの解読:機械学習が故障診断と原因分析の秘密を明らかにする

機械学習アルゴリズムは、リアルタイムでの効率的な問題解決のために、予知的な故障診断、問題の予測、および根本原因の解明...

AIニュース

「2023年のトップ18のAIベースのウェブサイトビルダー」

10Web ウェブサイトオーナーが効果的にウェブサイトを作成および管理するために、10WebはAIによって駆動するWordPressプラッ...

機械学習

ギガGPTに会ってください:CerebrasのnanoGPTの実装、Andrei Karpathyの効率的なコードでGPT-3のサイズのAIモデルを訓練するためにわずか565行のコード

大規模なトランスフォーマーモデルのトレーニングには、特に数十億または数兆のパラメータを持つモデルを目指す場合、重要な...

機械学習

CPR-CoachによるCPRトレーニングの革命:エラー認識と評価に人工知能を活用

心肺蘇生(CPR)は、心臓が効果的に拍動しなくなったり、呼吸が止まるといった心停止を経験した個人を蘇生させるための命を救...

機械学習

AIは精神疾患の検出に優れています

重症患者のせん妄検知は、患者のケアや回復に重要な影響を与える複雑なタスクです。しかし、人工知能(AI)と迅速な反応型脳...