AIの相互作用を変革する:LLaVARは視覚とテキストベースの理解において優れた性能を発揮し、マルチモーダルな指示従属モデルの新時代を切り開く

LLaVARはAIの相互作用を変革し、視覚とテキストベースの理解において優れた性能を持ち、マルチモーダルな指示従属モデルの新時代を切り開きます

<img src=”https://www.marktechpost.com/wp-content/uploads/2023/07/Screenshot-2023-07-01-at-10.42.23-PM-1024×662.png”/><img src=”https://www.marktechpost.com/wp-content/uploads/2023/07/Screenshot-2023-07-01-at-10.42.23-PM-150×150.png”/><p>複数のアクティビティを1つの命令に組み合わせることで、命令のチューニングは新しいタスクへの一般化を向上させます。このようなオープンエンドの質問に対応する能力は、ChatGPT 2以降のチャットボットの急増に貢献しています。CLIP-ViTのようなビジュアルエンコーダは、ビジュアル命令チューニングモデルの一部として最近会話エージェントに追加され、画像に基づいた人間とエージェントの対話を可能にします。しかし、彼らは画像内のテキストを理解するのに助けが必要です。おそらく、訓練データが自然なイメージ(例:Conceptual CaptionsとCOCO)の優勢であるためです。しかし、読解力は人間の日常的な視覚知覚にとって重要です。幸いにも、OCR技術により、写真から単語を認識することが可能になりました。</p><p>(より大きなコンテキスト長の)計算は、ビジュアル命令チューニングモデルの入力に認識されたテキストを追加することで(単純に)増加しますが、ビジュアルエンコーダのエンコーディング能力を完全に活用することはありません。これを実現するために、彼らは写真内の単語の理解が必要な命令に従うデータを収集することを提案しています。OCRの結果をOCR結果と組み合わせて、テキストリッチな画像を使用して422Kのノイズのある命令に従うデータを最初に収集します。</p><p>これらの大量のノイズのある対応データは、言語デコーダとビジュアル特徴の機能の整列を大幅に向上させます。さらに、テキストのみのGPT-4にOCRの結果と画像キャプションを使用して16Kの会話を生成するように依頼します。各会話には多くの質問と回答のペアが含まれる場合があります。このアプローチでは、GPT-4がOCRデータをノイズ除去し、ユニークな質問を作成する必要があります(図1)。彼らは取得されたデータの効果を評価するために、ノイズのあるデータと高品質の例を前処理および微調整の段階に補足的に使用します。</p><figure><img src=”https://lh4.googleusercontent.com/-AXzLZLUIIpwSBRrWQKqlBzz-EXf5cVHWCylLOuSOPcA9WR0VCjfJiLH4csuBmwvInV2RO3SWrP530DFQKr1IZt76lZJmdGw9YJN0gRbNqq3y8e1YwIyymtzK7DxvMkmTSkIefCHXn4wZqv8rUtXvsQ”/><figcaption><strong>図1</strong>は、命令に従う統計情報がどのように収集されるかを示しています。 | https://arxiv.org/pdf/2306.17107.pdf</figcaption></figure><p>ジョージア工科大学、アドビリサーチ、スタンフォード大学の研究者が開発したLLaVAR(Large Language and Vision Assistant that Can Read)は、視覚とテキストの両方の理解力で優れたパフォーマンスを発揮します。オリジナルのLLaVAと比較して、入力解像度を2242から3362に拡大することで、細かいテキストの特徴をより良くエンコードする実験を行いました。評価手法によると、彼らはScienceQAの微調整結果とともに、4つのテキストベースのVQAデータセットの結果を示しています。また、GPT-4に基づいた命令に従う評価には、LAIONからの50のテキストリッチな画像とCOCOからの30の自然画像も使用しています。さらに、ポスターやウェブサイトのスクリーンショット、ツイートなど、より洗練された命令に従う能力を測定するための定性的な分析も行っています。</p><p>まとめると、彼らの貢献は以下の通りです:</p><p>• 高品質な16Kとノイズのある422Kの命令に従うデータを収集しました。どちらもビジュアル命令チューニングを改善することが示されています。改善された能力により、彼らのモデルLLaVARは、テキストと画像を含む多様なオンライン素材に基づいたエンドツーエンドの対話を提供することができますが、モデルのパフォーマンスは自然な写真においてわずかに向上しています。</p><p>• トレーニングおよび評価データ、およびモデルのマイルストーンは公開されています。</p><p>この記事はMarkTechPostで最初に公開されました。</p>

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「FacebookとInstagramにて、Metaが新しいAI機能を発表」

人工知能において注目すべき進展が詰まった2022年において、Metaは革新的な進歩を遂げ、確実にリードを取っています。仮想ア...

機械学習

AIの聴覚スキルを革命化する:清華大学とバイトダンスが、高度なオーディオ処理のための画期的なマルチモーダルニューラルネットワーク「SALMONN」を発表

さまざまな自然言語処理アプリケーションでは、テキストベースの大規模言語モデルが印象的であり、人間に近いパフォーマンス...

機械学習

ハスデックスとステーブルディフュージョン:2つのAI画像生成モデルを比較

「HasdxとStable Diffusionは、さまざまなユースケース、コスト、機能などを考慮して、最高のテキストから画像への変換モデル...

AIニュース

患者のケアを革新するAI技術

国民保健サービス(NHS)にとって重要な進展がありました。Henry Smith MPは、政府が2,100万ポンドの資金を投じて、最新の人...

データサイエンス

「NVIDIA DGX Cloudが利用可能になり、生成型AIトレーニングを強化します」

NVIDIA DGX Cloud(ほぼすべての企業をAI企業に変えることができるツールを提供する)は、現在、Oracle Cloud Infrastructure...

機械学習

「Javaを使用した脳コンピュータインターフェース(BCI)アプリケーションの開発:開発者のためのガイド」

BCIsは脳デバイスの通信を可能にし、Javaはライブラリを使用して開発を支援しています課題には信号の品質と倫理が含まれます