「キナラがAra-2プロセッサを発表:パフォーマンス向上のためのオンデバイスAI処理を革命化」

「キナラがAra-2プロセッサを発表:美容とファッション界に革新的なオンデバイスAI処理でパフォーマンス向上」

Kinaraは、エネルギー効率の高いエッジAIのパイオニアであるAra-2プロセッサを発表しました。それは、前任者と比べて8倍の高性能を誇り、デバイス内で大規模な言語モデル(LLMs)とさまざまな生成AIモデルを強力にサポートする能力を備えています。

Kinaraのイノベーションへの執念から生まれたAra-2プロセッサは、プロセッサのラインアップの大きな進歩を表しており、顧客にはパフォーマンスとコストのオプションのスペクトラムが用意されています。チームはこの新しい追加の重要性を強調し、Ara-1とAra-2プロセッサの役割を詳細に説明しました。Ara-1はスマートカメラやエッジAIデバイスが2-8のビデオストリームを処理するのに優れている一方、Ara-2はエッジサーバー、ノートパソコン、高性能カメラに向けた16-32+のビデオストリームを素早く処理する能力を示しました。

チームはさらに、Ara-2の変革的な可能性について詳述し、物体検出、認識、トラッキングの向上におけるその重要な役割を強調しました。このプロセッサは、高度なコンピューティングエンジンを活用し、高解像度の画像を迅速かつ驚くほど高い精度で処理することに優れています。また、Generative AIモデルの処理能力は、Stable Diffusionに対して1枚の画像あたり10秒の速度を達成し、LLaMA-7Bに対しては秒間数十のトークンを生成できることで示されています。

Ara-1の後継として設計されたAra-2チップは、前任者と比べて5〜8倍もの大幅なパフォーマンス向上を約束しています。Kinaraは、Ara-2チップがさまざまなモデルで高コストで高消費電力のグラフィックスプロセッサを置き換える潜在能力を持つと主張しています。特に大規模な言語モデル(LLMs)のニーズに対応しています。

2024年1月のConsumer Electronics Show(CES)で発表される予定のAra-2プロセッサは、複数のバリエーションで提供されます。スタンドアロンチップ、単一チップのUSBおよびM.2モジュール、4つのAra-2チップを並列動作させるPCI Expressアドインボードとして利用できます。Kinaraはリリースを予想しながらも、価格の詳細を開示しておらず、愛好家や消費者がこの技術の驚異を探求することを待ち望んでいます。

まとめると、KinaraのAra-2プロセッサは、切り込んだパフォーマンス、多様性、効率を併せ持つオンデバイスAI処理の新時代を告げる存在です。CESでの近い展示は、エッジAI技術の領域を再定義する可能性のある変革的なツールを暗示して、産業界全体で興味を引き起こしています。

この投稿は、KinaraがAra-2プロセッサを発表:パフォーマンス向上のためのオンデバイスAI処理を革新の投稿最初に現れました。MarkTechPostより。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

ポーと一緒に蹴りの効いた中間プロンプト

「このPoeチャットボットを試して、Midjourneyのプロンプトを洗練させ、(もしかしたら?)キックアスの画像生成結果を得てく...

AI研究

この人工知能の研究は、トランスフォーマーベースの大規模言語モデルが外部メモリを追加して計算的に普遍的であることを確認しています

トランスフォーマーベースのモデル(GPT-2やGPT-3など)によって達成された驚くべき結果は、研究コミュニティを大規模な言語...

人工知能

「顔認識システムにおけるバイアスの解消 新しいアプローチ」

この記事では、顔認識システムにおけるバイアスに関する問題を探求し、開発者がこの問題を軽減するために採用できる潜在的な...

機械学習

「Decafと出会う:顔と手のインタラクションのための革新的な人工知能単眼変形キャプチャフレームワーク」

モノクルARGBビデオからの三次元(3D)トラッキングは、コンピュータビジョンと人工知能の最先端分野です。それは、単一の二...

AIニュース

「あなたはiPhoneに1,000ドル支払いましたが、Appleがまだそれを管理しています」

会社は、安全警告や故障を引き起こすソフトウェアを使用してデバイスをコード化しており、修理を困難にしています

AI研究

テキサス大学の研究者たちは、機械学習を用いてインプラントベースの再建合併症を予測する方法を紹介します

人工知能(AI)は現在ほとんどすべての分野を変革し、自動化、予測、意思決定の最適化を通じて既存のシステムを改善する潜在...