IBMの研究者が、深層学習推論のためのアナログAIチップを紹介:スケーラブルなミックスドシグナルアーキテクチャの重要な構成要素を披露

IBM researchers introduce analog AI chip for deep learning inference.

AI革命が進行中であり、ライフスタイルや職場を再構築することが期待されています。深層ニューラルネットワーク(DNN)は、基盤モデルと生成AIの出現により重要な役割を果たしています。しかし、これらのモデルをホストする従来のデジタルコンピューティングフレームワークは、パフォーマンスとエネルギー効率の潜在的な制約となっています。AI固有のハードウェアが登場していますが、多くの設計ではメモリと処理ユニットを分離しているため、データのシャッフルと効率の低下が生じます。

IBM Researchは、AI計算を再構想するための革新的な方法を追求しており、アナログインメモリコンピューティングまたはアナログAIという概念を提案しています。このアプローチは、神経回路網がニューロンの通信を制御するシナプスの強度から着想を得ています。アナログAIは、相変化メモリ(PCM)などのナノスケールの抵抗デバイスを使用して、導電性の値としてシナプスの重みを格納します。PCMデバイスは非終励性を持ち、範囲の値をエンコードし、重みをローカルに保存することができます。

IBM Researchは、最近のNature Electronics誌で、アナログAIの実現に向けて重要な進展を達成しました。彼らは、さまざまなDNN推論タスクに適した最先端のミックスドシグナルアナログAIチップを紹介しました。このチップは、IBMのアルバニーナノテックコンプレックスで製造され、各々が256×256のクロスバーアレイのシナプスユニットセルを持つ64個のアナログインメモリコンピュートコアを特徴としています。統合されたコンパクトな時間ベースのアナログ・デジタル変換器により、アナログとデジタルのドメイン間のシームレスな切り替えが可能となっています。さらに、各コア内のデジタル処理ユニットは基本的なニューロン活性化関数とスケーリング演算を処理します。

このチップのアーキテクチャにより、各コアはDNNレイヤーに関連する計算を処理する能力を持っています。シナプスの重みはPCMデバイスにアナログ導電値としてエンコードされます。グローバルなデジタル処理ユニットは、特定のニューラルネットワークの実行に重要な複雑な操作を管理します。チップのデジタル通信パスは、すべてのタイルと中央のデジタル処理ユニットを接続しています。

性能に関しては、このチップはCIFAR-10画像データセットで92.81%という印象的な正答率を示し、アナログインメモリコンピューティングにおいて非常に優れた成果を収めています。この研究では、アナログインメモリコンピューティングをデジタル処理ユニットとデジタル通信ファブリックとシームレスに統合することで、より効率的なコンピューティングエンジンを実現しました。チップの面積あたりのGiga-operations per second(GOPS)におけるスループットは、従来の抵抗メモリベースのインメモリコンピューティングチップの15倍以上を超えるエネルギー効率を維持しながら実現されました。

アナログ・デジタル変換器、積和演算能力、およびデジタル計算ブロックの突破的な進歩を活用し、IBM Researchは高速で低消費電力のアナログAI推論アクセラレータチップに必要な多くの要素を実現しました。以前提案されたアクセラレータのアーキテクチャは、多数のアナログインメモリコンピューティングタイルを専用のデジタルコンピュートコアに接続し、並列な2Dメッシュを介して接続されています。このビジョンとハードウェアに対するトレーニング技術は、将来のさまざまなモデルでソフトウェアと同等のニューラルネットワークの精度を提供すると期待されています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Related articles

Discover more

機械学習

このAI論文は、大規模な言語モデルにおける長期的な会話の一貫性を向上させるための再帰的なメモリ生成手法を提案しています

チャットボットや他のオープンドメインのコミュニケーションシステムは、近年の関心と研究の急増を見ています。長期的な議論...

人工知能

「トップのローコード/ノーコードAIツール(2023年9月)」

低コードおよびノーコードのAIツールとプラットフォームの台頭により、機械学習を新たな方法で活用するアプリケーションが開...

AI研究

『CMUからの新しいAI研究は、適切な言語モデルに対して物議を醸す行動を生成させるための、簡単で効果的な攻撃手法を提案しています』

ChatGPT、Bard AI、およびLlama-2などの大規模言語モデル(LLM)は、望ましくないまたは攻撃的なコンテンツを生成することが...

機械学習

「最適化によるAIトレーニングにおける二酸化炭素排出量の削減」

ミシガン大学の研究者たちは、ディープラーニングモデルのエネルギー消費問題に対処するためのオープンソースの最適化フレー...

人工知能

アンソロピックは、以前のモデルと比べて、コーディング、数学、論理思考において大幅な改善を果たしたClaude 2モデルをリリースしました

Anthropicは、Claude 2という新しいモデルを発表しました。このモデルは、改善されたパフォーマンス、より長い応答時間、API...

機械学習

『プロンプトブリーダーの内部:Google DeepMindの新しい自己改善プロンプト技術』

「論理的思考と即座の進化・最適化が、大規模言語モデル(LLM)における次の重要なフロンティアとして認識されています私たち...