機械学習における公平性(パート1)

美容とファッションのエキスパートが教える、魅力とスタイルへの道(パート1)

写真提供:John Schnobrich(Unsplash)

目次

  1. 機械学習における公正さ
  2. 問題の証明
  3. 基本的な概念:差別、バイアス、公平性

1. 機械学習における公正さ

教育、雇用、広告、警察など、機械学習のアルゴリズムは日常生活に大きな影響を与えています。機械学習(ML)のアルゴリズムは客観的に見えるかもしれませんが、バイアスの傾向はMLの本質に組み込まれています。多種多様な敏感な分野でのMLの広範な使用は、MLに基づく意思決定が事実に基づいており、人間の認知的バイアス、差別的傾向、感情に影響を受けないことを示唆しています。実際のところ、これらのシステムは、直接または間接的に人間のバイアスが形成されたデータから学習します [1]。

犯罪司法、社会福祉政策、雇用、個人の財務など、社会的な影響を持つ分野では、データセットに敏感な属性(人種、性別、年齢、障害の有無など)やそれらの属性と密接に関連している特性が含まれているため、自動化された意思決定が公平性の原則を尊重することが重要です。公平性を無視すると、社会的に許容できない結果につながる可能性があります。特に自動化された連続的な意思決定を考えるとき、「不正義の持続、つまり、敏感な特徴、意思決定、結果の間に公平ではない依存関係を維持、強化、または導入する場合」は懸念されます [2]。

その結果、機械学習におけるバイアスの影響は、実際の変化を認識することさえ困難にしています。AIシステムの日々の影響は巨大であり、企業や国家のシステムに限定されるものではなく、ブラウザで情報を収集するたびに私たちの手に実際に感じられるものです。

図1.1:学問の進化のタイムライン [3]

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

AIとMLによる株式取引の革命:機会と課題

「AI/MLは、予測分析、効率性、市場適応性と倫理の課題を通じて株式取引を変革し、Pythonの例を示す」となります

機械学習

「大規模言語モデルの微調整方法:ステップバイステップガイド」

2023年、アルパカ、ファルコン、ラマ2、およびGPT-4のような大規模言語モデル(LLM)の台頭は、人工知能の民主化の傾向を示し...

機械学習

Learning to build—Towards AI コミュニティニュースレター第1号

私たちは最新のニュースレターをお知らせすることをとても楽しみにしています!それは私たちの共同体についてのすべてですコ...

データサイエンス

「深層学習技術を利用した人工知能(AI)によるADASの向上」

ディープラーニングは、リアルタイムのセンサーデータを使用して、正確な物体検出、衝突予測、および積極的な意思決定を実現...

AIニュース

このAIニュースレターは、あなたが必要とするすべてです#74

今週は、残念ながらOpenAIの連続する出来事に注目が集まり、いくつかの興味深い新しいモデルの発表が overshadow されてしま...