「教師なし学習シリーズ — セルフオーガナイズマップの探求」

Exploring Self-Organizing Maps - Unsupervised Learning Series

Self-Organizing Maps(SOM)の動作原理となぜそれらは有用な教師なし学習アルゴリズムであるかを学びましょう

teckhonc @Unsplash.comによるイメージ

自己組織化マップ(SOM)は、クラスタリングや高次元データの可視化に利用される教師なしニューラルネットワークの一種です。SOMは、ネットワーク内のノード(またはニューロン)が入力データを表現する権利を競う競争学習アルゴリズムを使用してトレーニングされます。

SOMの構造は、各ノードがSOMソリューションの重心を表す重みベクトルに関連付けられる2Dグリッドのノードで構成されています。ノードは、類似したデータポイントを中心に組織化され、基になるデータを表す層を生成します。

SOMは、以下のようなさまざまなタスクで一般的に使用されます:

  • データの可視化
  • 異常検知
  • 特徴抽出
  • クラスタリング

また、SOMは教師なし学習の最もシンプルなニューラルネットワークバージョンとしても視覚化することができます!

最初は混乱するかもしれませんが、自己組織化マップ(またはその発明者にちなんでコホネンマップとも呼ばれる)は、データから基になる構造をマッピングすることができる興味深いアルゴリズムの一種です。次のように説明できます:

  • バックプロパゲーションのない、1層の教師なしニューラルネットワーク。
  • 制約付きのk-meansソリューションであり、ノードが他のノードの移動に影響を与える能力を持つ(k-meansの文脈では、ノードは重心として知られています)。

このブログ記事では、SOMモデルでいくつかの実験を行います。後で、実際のユースケースに自己組織化マップを適用し、アルゴリズムの主な特徴と欠点を確認することができます。

SOMの学習方法の理解

SOMの学習方法を理解するために、まずは2次元のおもちゃデータセットをプロットしてみましょう。

次のデータセットを持つnumpy配列を作成し、その後にプロットします:

import numpy as npX = np.array([[1, 2], [2, 1], [1, 3], [1, 2.5], [3.1, 5], [4, 10], [3.6, 5.4], [2…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

5つの最高のChatGPT SEOプラグイン

SEOの専門家たちは、ChatGPTプラグインがGoogleのランキングを上げるのを助けるすばらしいツールであることに気づき始めています

人工知能

「AI倫理ツールキットが機能する理由を探る」

AIシステムの重要な影響を持つアプリケーションでの使用が増えるにつれて、専門家たちはこれらのシステムを設計する際により...

機械学習

「グラフ機械学習 @ ICML 2023」

「壮大なビーチとトロピカルなハワイの風景🌴は、勇敢な科学者たちを国際機械学習会議に出席し、最新の研究成果を発表するこ...

人工知能

プロンプトエンジニアリング:AIを騙して問題を解決する方法

「これは、実践的な大規模言語モデル(LLM)の使用に関するシリーズの第4回目の記事ですここでは、プロンプトエンジニアリン...

人工知能

音楽作曲のための変分トランスフォーマー:AIは音楽家を置き換えることができるのか?

導入 音楽の魅力的な世界では、創造性には制約がありません。クラシックの交響曲からモダンなエレクトロニックビートまで、そ...

データサイエンス

「AIの新機能:ChatGPTプラグインとインターネットアクセスの最新情報」

「今日は、現在最も有名なAIの1つであるChatGPTの新しいアップデートについてお伝えします」