Dropboxが、ゲームチェンジングなAIパワードツールを発表:生産性とコラボレーションの新時代

Dropbox announces game-changing AI-powered tool a new era of productivity and collaboration.

今日のデジタル世界では、常にデータに圧倒されています。以前に比べて情報がより多く利用可能になっていますが、必要な情報を見つけるのに時間がかかる場合があります。特に、タスクが複数のプログラムに分散している場合は特にそうです。AIとMLの最近の進歩により、わずか数か月で新たな機会の時代が訪れました。機械が読み書きし、私たちと話し、すべての質問に答える未来が、まるで一夜にして現れたのです。

しかし、これはAIが生産性をどのように向上させるかの表面に触れるに過ぎません。顧客は、自分たちのために一から構築されたAIが欲しいと明確に示しています。彼らの質問に答え、彼らのデータとビジネスの内容に洞察を提供するAIを求めています。Dropboxチームは、ユーザーがコンテンツを最大限に活用し、生産性を最大化するための新しいAIパワードツール、Dropbox DashとDropbox AIをリリースしました。

Dashは、人工知能によって駆動される包括的な検索エンジンです。Dashを使用すると、Dropboxのコンテンツ、受信トレイ、メッセージ、開いているタブなどを含む検索を行うことができます。Google DocsやSlackなどのアプリにもそれぞれ独自の検索機能があります。Dashは機械学習を中心にしているため、使用するほど改善されます。Dashを使用するほど、自分の検索の習慣を学び、より正確にニーズを予測することができるようになります。

Dashは検索エンジンにとどまらず、コンテンツを「スタック」に整理することもできます。例えば、現在進行中の作業のためのスタックや関連する調査を行ったスタックなどを作成することができます。ユーザーの行動に基づいて、Dashは試すべき他のスタックも推奨することができます。まだ開発中ではありますが、Dropbox Dashは効果的な時間の節約と生産性向上ツールです。

DashにはStart Pageというツールもあります。一元的な検索(Dash)、スタック(進行中の作業)、最近完了したタスクへのクイックリンク、会議の要求によって、日常を効率的に進め、最も重要なことに戻ることができます。

Dropbox Dashの利点の一部は以下の通りです:

  • この方法を使用することで、回答を探すのに時間を無駄にせずに済みます。
  • ドキュメントや情報を探すのにかける時間を減らして、より多くのことを行えます。
  • 類似したメディアをまとめて整理することで、秩序を保つことができます。
  • スタック内の最近の活動を表示して、開発の最新情報を把握し続けることができます。
  • コンテンツスタックへの追加の提案を見つけることができます。

興味がある場合は、Dropbox Dashのベータテストに参加することができます。https://www.dropbox.com/dash

Dropbox AIチームは、ウェブサイトの最も訪れられる領域の1つであるファイルプレビューに人工知能(AI)を実装しています。長文を素早く把握したり、全体をひと通り見ることなく視聴したりすることができます。例えば、契約書や会議の記録をクリックひとつで簡単に要約することができます。

山ほどのデータを探し回ることなく、まさに求めているものを見つけることができます。瞬時の回答を得るために質問するのと同じくらい簡単です。そして、まもなくユーザーはDropbox AIをすべてのフォルダとファイルで利用することができるようになります。Dropboxファイルプレビュー用の人工知能は現在ベータ版です。現在、テスト用に選ばれたDropbox Teamsに展開され、米国のすべてのDropbox Proの顧客に提供されます。全体として、Dropbox AIは効率性、生産性、秩序を促進する役立つアプリです。

Dropboxチームは、最先端の技術をクライアントのために実装することの重要性を認識しています。彼らはAI Principlesというコア原則に再度コミットし、今後も革新的なAIパワード製品体験を提供していきます。AI技術ができるだけ公正かつ信頼性の高いものとして開発されるためには、消費者のプライバシーを保護し、透明性を持って行動し、AI技術の偏見を制限することが将来のAI世代において重要となるでしょう。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

制限から自由:MoMAでのマシン幻覚の検証

Refik Anadol Studioのリードデータサイエンティスト、クリスチャン・バークは、MoMAで展示された「Unsupervised」展での仕事...

データサイエンス

エントロピーを使用した時系列複雑性解析

すべてのデータサイエンティストはこれを知っています:Machine Learningの問題の解決における最初のステップは、データの探...

機械学習

エコジェンに会ってください:生物学者や生態学者のためにリアルな鳥の歌を生成するために設計された新しいディープラーニングのアプローチ

ディープラーニングの登場は、さまざまな分野に大きな影響を与え、さまざまな領域にその影響を広げています。注目すべき応用...

機械学習

ビデオスワップに会おう:対話型意味ポイント対応でビデオの被写体交換をカスタマイズする人工知能フレームワーク

最近、ビデオ編集において人工知能(AI)を使った編集が進化しています。今回はその中でも特に有望な分野として、拡散ベース...

コンピュータサイエンス

「テック企業は、ワークアウトを通じて女性にVRヘッドセットの魅力を伝えることを期待しています」

「主要なテクノロジー企業は、仕事、フィットネス、エンターテイメントのアプリケーションを若い女性に販売することで、仮想...