ディープシークは、ディープシーク-67Bモデルをオープンソース化しました:中国からの最新のChatGPTのライバル

ディープシーク、中国からの最新ChatGPTのライバル「ディープシーク-67Bモデル」をオープンソース化

中国のAIスタートアップ、DeepSeek AIは、DeepSeek LLMファミリーのデビューによって、大規模な言語モデル(LLM)の新時代を切り拓いています。 DeepSeek LLM 7B/67B BaseとDeepSeek LLM 7B/67B Chat からなるこれらのオープンソースモデルは、言語理解と多目的応用において大きな進歩を表しています。

DeepSeekのLLMの特色の一つは、67B BaseバージョンがLlama2 70B Baseに比べて優れた性能を発揮していることです。理論推論、コーディング、数学、中国語の理解などの分野で優れた能力を示します。

DeepSeek LLMのこの質的な飛躍は、幅広いアプリケーションでのその能力を示しています。特に注目すべきは、DeepSeek Chatが、類似のサイズのモデルをしのぐ、人間の評価基準の73.78%の合格率を達成したことです。また、調整なしでGSM8K数学データセットで84.1%をスコアリングするという卓越した力を示しました。

DeepSeek AIは、モデルの7億パラメータバージョンと67億パラメータバージョンを含む、ベースおよび専門用途のChatバリアントをオープンソース化することで、広範なAI研究と商業アプリケーションの促進を目指しています。

バイアスのない綿密なパフォーマンス評価を保証するために、DeepSeek AIは、ハンガリー国立高校試験やGoogleの指示に従った評価データセットなどの新しい問題集を設計しました。これらの評価は、モデルが以前に見たことのない試験やタスクを効果的に処理する能力を効果的に示しました。

スタートアップは、知的財産権を尊重しながら、多様性と独自性を高めることに焦点を当てた緻密なデータ収集とトレーニングプロセスについての洞察を提供しました。マルチステップのパイプラインでは、品質の高いテキスト、数学の式、コード、文学作品、さまざまなデータ型を選別し、有害な内容や重複したコンテンツを除外するためのフィルタを実装しました。

DeepSeekの言語モデルは、LLaMAに類似したアーキテクチャで設計され、厳格な事前トレーニングを受けました。7BモデルではMulti-Head Attentionを、67BモデルではGrouped-Query Attentionを利用しました。トレーニング計画では、大規模なバッチサイズとマルチステップの学習率スケジュールを使用し、堅牢で効率的な学習能力を確保しました。

これら最新のオープンソースLLMのリリースを主導することで、DeepSeek AIは言語理解とAIのアクセシビリティにおける重要なマイルストーンを築き、フィールドでのイノベーションとより広範な応用を促進しています。

この記事は、DeepSeek Open-Sources DeepSeek-67Bモデル:中国からの最新のChatGPTライバルに最初に掲載されたものです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

Deep learning論文の数学をPyTorchで効率的に実装する:SimCLR コントラスティブロス

PyTorch / TensorFlow のコードに深層学習論文の数学を実装することは、深層学習モデルの数学的な理解を深め、高度なプログラ...

データサイエンス

「ニューラルネットワークとディープラーニングの基礎の理解」

この記事は、ニューラルネットワークとディープラーニングの基礎について詳細な概要を提供することを目的としています

データサイエンス

「Langchainとは何ですか?そして、大規模言語モデルとは何ですか?」

この包括的な記事では、LangChainとLarge Language Modelsの両方を探求します両方を理解するために、簡単なチュートリアルを...

機械学習

マシンラーニングのロードマップ:コミュニティの推奨事項2023

前回の記事で、このロードマップの第1部では、機械学習のための出発点と方向性について簡単に説明しました初心者が堅固な基盤...

機械学習

オペレーションの頭脳:人工知能とデジタルツインで手術の未来を地図化するアトラスメディテック

アスリートが試合のためにトレーニングし、俳優が公演のためにリハーサルするように、外科医も手術の前に準備をします。 今、...

機械学習

魚の養殖スタートアップ、AIを投入して水産養殖をより効率的かつ持続可能にする

海洋生物学の学生だったJosef Melchnerは、イルカ、クジラ、魚を探すために毎日海をクルーズすることを常に夢見ていましたが...