DeepMind RoboCat:自己学習ロボットAIモデル

DeepMind RoboCat Self-learning Robot AI Model.

世界的に有名なAI研究所であるDeepMindは、ロボットアームの様々なモデルを使用して幅広い複雑なタスクを実行できるAIモデルRoboCatを発表しました。以前のモデルとは異なり、RoboCatは複数のタスクを解決し、異なる現実世界のロボットにシームレスに適応する能力があります。この素晴らしい成果の詳細について掘り下げ、RoboCatがロボティクスの分野を革新する方法を探ってみましょう。

また読む:Amazonの秘密の家庭用AIロボットは何でもできます

多機能なRoboCat:ロボティックインテリジェンスの飛躍

DeepMindの画期的なAIモデルRoboCatは、ロボティクスの多様性に前例のないレベルを示しています。DeepMindの研究者であるAlex Leeによると、RoboCatは複数の現実的なロボットの具現化にわたって多様なタスクに取り組むことができる単一の大型モデルです。つまり、モデルは新しいタスクや異なるロボット構成に迅速に適応することができます。これはロボティクスの分野において重要なマイルストーンとなります。

また読む:スパイダーマンになるAIロボットアーム「自在アーム」

GATOからインスピレーションを得て:テキストからロボティックスへ

RoboCatは、DeepMindが開発した別のAIモデルであるGATOからインスピレーションを得ています。GATOはテキスト、画像、イベントを分析して応答する驚異的な能力を持っています。DeepMindの研究者は、この概念を活用して、シミュレーション環境と現実のロボティクス環境から収集した画像とアクションデータからなる大規模データセットでRoboCatをトレーニングしました。

強力なRoboCatをトレーニングする

RoboCatをトレーニングするため、DeepMindのチームは、人間が制御するロボットアームによって実行されるさまざまなタスクの100〜1,000のデモンストレーションを収集しました。これらのデモンストレーションは、特定のタスクに対してモデルを微調整し、専門の「スピンオフ」モデルを作成するための基盤となりました。各スピンオフモデルは、各タスクについて平均10,000回の練習を行いました。

また読む:世界初のAIパワードアーム:知っておくべきすべて

限界を突破する:RoboCatのポテンシャルを解き放つ

RoboCatの最終バージョンは、合計253のタスクでトレーニングされ、これらのタスクの141のバリエーションでベンチマークが行われ、シミュレーションされた場合と現実世界のシナリオの両方を含んでいます。DeepMindは、モデルが数時間の人間が制御するデモンストレーションを1,000回観察した後、異なるロボットアームを操作する方法を成功裏に学んだと報告しています。しかし、成功率は異なり、タスクによって13%から99%まで幅広く、デモンストレーションの数が決定的な要因となります。

また読む:AlphabetがFlowstateを解き放つ:誰でも使えるロボットアプリ開発プラットフォーム

新しいフロンティアを開拓する:ロボティクスを再定義する

成功率が異なるにもかかわらず、DeepMindは、RoboCatが新しいタスクを解決するためのバリアを下げる可能性があると考えています。Alex Leeは、新しいタスクのデモンストレーションの数が限られていても、RoboCatを微調整し、パフォーマンスをさらに向上させることができると説明しています。究極の目標は、RoboCatに新しいタスクを教えるために必要なデモンストレーションの数を10以下に減らすことで、ロボティクスの分野を革新することです。

また読む:Sanctuary AIのPhoenix RobotとTeslaの最新発売、Optimusに会ってください!

私たちの意見

DeepMindのRoboCatは、ロボティクスの分野における重大な突破口を表しています。1つのAIモデルが、複数のタスクや異なるロボットの具現化にわたって適応し、優れた性能を発揮することができることを示しています。大規模なデータセットでのトレーニングと微調整のパワーを活用することで、RoboCatは将来の進歩の基盤を築きました。ロボットに新しいタスクを教えるプロセスを効率化する可能性があるRoboCatは、革新の新時代をもたらすかもしれません。RoboCatが最小限の人間の介入でシームレスに適応し、学習する未来を切り拓くには、エキサイティングな時代が待っています。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「データ注釈は機械学習の成功において不可欠な役割を果たす」

「自動車から医療まで、AIの成功におけるデータアノテーションの重要な役割を発見しましょう方法、応用、そして将来のトレン...

AIニュース

「Google Bardの拡張機能を無料で使用する方法」

「Bard拡張機能を使用すると、Google Maps、YouTube、およびGmailをより効果的に利用できます」

機械学習

「NVIDIAのグレース・ホッパー・スーパーチップがMLPerfの推論ベンチマークを席巻する」

MLPerf業界ベンチマークに初登場したNVIDIA GH200 Grace Hopperスーパーチップは、すべてのデータセンターインファレンステス...

AIニュース

「IIT卒業生のAIによるカバーレターが皆を爆笑させる」

事件の風刺的な展開の中で、あるIIT(インド工科大学)の卒業生が人工知能を活用してカバーレターを作成しようとした結果、大...

機械学習

最初のネイティブLLMは電気通信業界に最適化されました

キネティカのSQL-GPT for Telecomは、ネットワークのパフォーマンスと顧客体験を最適化するためのより高速な分析と対応を可能...

AIニュース

「ChatGPTのコピーライターへの影響:AIと統合された未来における苦悩と希望」

人工知能の台頭は、コンテンツ作成の世界を含むさまざまな産業を確実に変革しました。しかし、最近のニューヨークポストの報...