「マシンラーニングプロジェクトで私が犯した同じ過ちを com 因さないでください!」

「私の経験から学んで、マシンラーニングプロジェクトで同じ過ちを犯さないでください!」

機械学習プロジェクトで重要な要素を認識しました

Photo by Pierre Bamin on Unsplash

ほとんどの場合、私たちはそれを全く考慮しないことがあります。

私はインターン経験から苦い経験をしました。

私の旅は、大学で機械学習の基礎を学び始めたときに始まりました。私は物事がどのように動作するかについて深い理解を得るために多くのプロジェクトを行っていました。

これにより、他の人と比べて一歩先を進めることができました。これらの概念を現実世界の応用に適用するための知識を高めることができました。

しかし、気付かずに私は毎回のプロジェクトでそれを繰り返し行ってしまいました。私は以下の点に重点を置いていました:

  1. どの機械学習モデルを使用するか?
  2. 最適化戦略を使用してパフォーマンスを向上させる。
  3. EDA分析に時間を投資する。
  4. データクリーニングのさまざまな技術。

このリストはこの記事の最後まで続きます。これらは高性能なモデルを構築するために不可欠な要素であることに同意します。

しかし、広い視野で見ると、上記の手順は一般的にすべての機械学習プロジェクトで同じです。では、あなたはどのような変更がすべてのプロジェクトで重要視されると考えますか?

データがすべてを変えます!!!

Photo by Markus Spiske on Unsplash

データが変化すると、データのクリーニング戦略も変化し、洞察を見つけるために使用される可視化グラフも異なります。どのモデルを選ぶかも変わりますなど。

データの視点

私たちは、モデル開発に時間をかけることでパフォーマンスが低いから高いに変わると仮定しています。しかし、それは真実ではありません。データの品質は非常に重要ですし、モデルの精度においてゲームチェンジングな要素です。

広範な理解を得るために、以下のシナリオを見てみましょう

シナリオA

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

「GPT-4と説明可能なAI(XAI)によるAIの未来の解明」

はじめに 常に進化し続ける人工知能(AI)の世界で、GPT-4は人間のようなテキスト生成の驚異です。それはまるで自分の言語を...

機械学習

AIの変革の道:OpenAIのGPT-4を通してのオデッセイ

ソフトウェア開発者は、OpenAIのGPT-4を使用して複数のアプリケーションを生成し、時間の節約、コストの削減、パーソナライズ...

データサイエンス

テキストから画像への革命:SegmindのSD-1Bモデルが最速のゲームで登場

紹介 Segmind AIは、画期的なオープンソースのテキストから画像への生成モデルであるSSD-1B(Segmind Stable Diffusion 1B)...

機械学習

「MFAを超えて:オクタがエンタープライズアイデンティティを再定義する方法」

新しい解決策は、AIと自動化を活用して企業のセキュリティ姿勢を強化し、従業員の生産性を高めます

人工知能

ネットワークの強化:異常検知のためのML、AI、およびDLの力を解き放つ

「機械学習、人工知能、およびディープラーニングの技術が使われることで、ネットワークセキュリティを向上させ、精度を持っ...

データサイエンス

「データ注釈は機械学習の成功において不可欠な役割を果たす」

「自動車から医療まで、AIの成功におけるデータアノテーションの重要な役割を発見しましょう方法、応用、そして将来のトレン...