新しいAI研究がMONAI Generative Modelsを紹介:研究者や開発者が簡単に生成モデルをトレーニング、評価、展開できるオープンソースプラットフォーム

AIの新しい研究で、MONAI Generative Modelsが紹介されました研究者や開発者はこのオープンソースプラットフォームを使って簡単に生成モデルをトレーニング、評価、展開することができます

最新の生成型人工知能の進歩により、医療画像を含む複数の分野で新たな進展がありました。これらの生成モデルは、異常検出、画像対画像変換、ノイズ除去、磁気共鳴画像(MRI)再構築など、様々な用途において大きな可能性を持っています。しかし、これらのモデルは複雑であるため、実践化や再現性には困難が伴います。この複雑さは進捗を遅らせ、ユーザーの参入障壁を作り、確立された手法と比較して新しいアプローチの評価を妨げる可能性があります。

生成モデルの構築と展開を簡単かつ標準化するために、研究者チームはMONAI Generative Modelsというオープンソースプラットフォームを作成しました。このグループには、キングスカレッジロンドン、国立精神衛生研究所、エジンバラ大学、バーゼル大学、韓国科学技術院、NVIDIA、スタンフォード大学、マウントサイナイ医学校、ロンドン大学などの研究者が参加しました。

技術の有効性を示すために、分布外検出から画像変換、スーパーレゾリューションまで、さまざまな医療画像関連のトピックをカバーした5つの研究が説明されています。2Dおよび3Dのシナリオでさまざまなモダリティと解剖学的領域を使用してプラットフォームの適応性が示され、医療画像のさらなる発展のための新しいツールとしての潜在能力が示されています。5つの実験は以下の通りです:

  1. 提案されたモデルは新しい状況に簡単に適応でき、さまざまな状況での徹底的な比較を可能にし、初期の対象範囲を広げることができます。この品質を示すために、研究者はパッケージ内の最先端のモデルの1つである潜在拡散モデルとその能力を評価しました。このモデルは、体型や活動タイプが異なるデータセットから新しい情報を生成する能力を持っています。
  2. 潜在的な生成モデルには、圧縮モデルと生成モデルの2つの基本的な部分が含まれており、チームはこれらが非常に柔軟であることを示しています。
  3. このシステムを使用すると、さまざまな医療画像アプリケーションで生成モデルを使用することが容易になります。チームは、通常範囲外の3D画像データの検出に適用できることを示しました。
  4. Stable Diffusion 2.0 Upscalerメソッドを使用して、生成モデルのスーパーレゾリューションの可能性も調査しました。調査結果は、特に3Dモデルにおいて、生成モデルがスーパーレゾリューションアプリケーションに有用であることを示しています。
  5. チームはまた、モデルがスーパーレゾリューション写真とどのように機能するかをテストしました。これにより、拡大されたテストセットの写真とそれに対応する正解画像を比較しました。これらの結果は、モデルの優れたスーパーレゾリューション能力を確認し、画像の明瞭さ向上における効率性を証明しています。

将来的には、研究者はMRI再構築などの他のアプリケーションのサポートを向上させ、モデル比較を容易にするためにより最新のモデルを組み込む予定です。これらの進展により、医療生成モデルおよびその応用分野はさらなる発展を続けるでしょう。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「Amazon SageMaker JumpStartで利用可能な自動音声認識のWhisperモデル」

「今日は、OpenAI Whisper ファウンデーションモデルが Amazon SageMaker JumpStart を利用するお客様に利用可能であることを...

AI研究

「このAI研究は、合成的なタスクにおけるTransformer Large Language Models(LLMs)の制限と能力を、経験的および理論的に探求します」

ChatGPTはトレンドであり、毎日数百万人が利用しています。質問応答、ユニークで創造的なコンテンツの生成、大量のテキストデ...

機械学習

AIベースのアプリケーションテストのトップトレンドを知る必要があります

「AIアプリケーションのテストにおける最新のトレンドを把握しましょうこれらの必須のテスト方法で、AIアプリケーションの精...

機械学習

自然言語処理:BERTやGPTを超えて

技術の世界は常に進化しており、その中でも特に進歩が見られる分野の一つが自然言語処理(NLP)です数年前には、BERTとGPTと...

AI研究

「エアガーディアンと出会ってください:目の追跡技術を使用して、MITの研究者たちが開発した人間のパイロットがどこを見ているかを追跡する人工知能システム」

自律的なシステムがますます普及している世界において、その安全性とパフォーマンスの確保は非常に重要です。特に自律型の航...

データサイエンス

「PyMC-Marketingによる顧客のライフタイムバリュー予測」

要約:顧客生涯価値(CLV)モデルは、顧客分析において価値のある顧客を特定するための重要な技術ですCLVを無視すると、過剰...