「効率的な変数選択のための新しいアルゴリズムが提案されました」

A new algorithm for efficient variable selection has been proposed.

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

アルゴリズムは6つの重みベクトルを組み合わせ、しきい値探索戦略を使用してスペクトルから有用な情報を抽出するための最適な重みベクトルを探索します。¶ クレジット: 中国科学院合肥物理科学研究所

中国科学院合肥物理科学研究所の研究者は、化学計量学の応用における変数選択アルゴリズムを開発しました。

マルチウェイトベクトル最適選択およびブートストラップソフト縮小(MWO-BOSS)アルゴリズムは、スペクトル予測モデルの開発時に最適な波長の組み合わせを特定するプロセスをより効率的にすることを目指しています。

MWO-BOSSは、選択比率、射影における変数の重要度、周波数ベクトル、残差分散ベクトルの逆数、回帰係数、および多変量相関の有意性の6つの重みベクトルから最適な重みベクトルを選択し、しきい値探索戦略を用いてスペクトルから有益な情報を抽出します。

公開されているデータセットにおけるテストでは、このアルゴリズムは変数を効率的に選択し、モデルの予測能力を向上させることに成功しました。中国科学院の記事を参照してください。

抄録の著作権は2023年のSmithBucklin、ワシントンD.C.、アメリカにあります

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

「機械学習モデルのログと管理のためのトップツール」

機械学習において、実験トラッキングはすべての実験メタデータを1つの場所(データベースまたはリポジトリ)に保存します。モ...

AI研究

東京大学の研究者たちは、静的バンディット問題からより困難な動的環境に向けた拡張フォトニック強化学習手法を開発しました

機械学習の世界では、強化学習の概念が中心になっており、特定の環境内で反復的な試行と誤りを通じてエージェントがタスクを...

機械学習

「人工知能(AI)とWeb3:どのように関連しているのか?」

AIとは何ですか? 簡単に言えば、人工知能(AI)とは、通常人間の思考と関連付けられる機能を機械が行う能力のことです。例え...

データサイエンス

ワシントン大学とプリンストン大学の研究者が、事前学習データ検出データセットWIKIMIAと新しい機械学習アプローチMIN-K% PROBを発表しました

“`html 大規模な言語モデル(LLMs)は、大量のテキストデータを処理できる強力なモデルです。彼らは数百ギガバイトから...

AI研究

スタンフォードの研究者がRoboFuMeを導入:最小限の人間の入力でロボットの学習を革新する

機械学習を含む多くのドメインでは、タスク固有のモデルを学習するための広範な成功パラダイムとして、まず既存の多様な先行...

AI研究

Google DeepMindの研究者がDiLoCoを導入:効果的かつ強靭な大規模言語モデルのトレーニングのための新しい分散型、低通信マシンラーニングアルゴリズム

現実世界のアプリケーションにおける言語モデルのソアリング能力は、標準的なバックプロパゲーションのような従来の方法を使...