「これらの3つのあまり知られていないPandasの関数を試してみてください」

3つのあまり知られていないPandasの関数を試してみてください

Pandasを使用してデータ処理スキルを向上させる

写真:Balázs Kétyi氏によるUnsplash

経験豊富なデータサイエンティストや機械学習エンジニアに尋ねると、彼らの仕事で最も時間がかかるのは何でしょうか?多くの人が答えるでしょう:データの前処理 — データを整理し、順次データ分析のために準備するステップです。その理由はシンプルです — ゴミを入れればゴミを出すことになります。つまり、データを正しく準備しないと、データの「洞察」はほとんど意味を成しません。

データの前処理ステップはかなり手間がかかるかもしれませんが、Pandasは私たちが比較的簡単にデータのクリーンアップ作業を完了させるためのすべての必要な機能を提供しています。ただし、その汎用性のため、すべてのユーザーがpandasライブラリが提供するすべての機能を知っているわけではありません。この記事では、データサイエンスプロジェクトで試すことができる3つのあまり知られていないが非常に便利な関数を共有したいと思います。

それでは、さっそく見てみましょう。

注意:文脈を提供するために、衣料品店のデータ管理と分析を担当していると仮定します。以下に示す例はこの仮定に基づいています。

1. explode

最初に紹介したい関数はexplodeです。この関数は、リストを含む列のデータを扱う場合に役立ちます。この列にexplodeを使用すると、リストの各要素を別々の行に抽出して複数の行を作成します。

以下は、explode関数の使用方法を示すシンプルなコード例です。注文情報を格納するデータフレームがあると仮定します。このテーブルでは、以下のようにアイテムのリストを含む列(order列)があります:

order_data = {    'customer': ['John', 'Zoe', 'Mike'],    'order': [['Shoes', 'Pants', 'Caps'], ['Jackets', 'Shorts'], ['Ties', 'Hoodies']]}order_df = pd.DataFrame(order_data)order_df

必要な操作は、リストの各アイテムを別々の行に分割してさらなるデータ処理を行うことです。explodeを使用せずに、素朴な解決策は以下の通りです。単純に元の行を反復します…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「Adam Ross Nelsonによる自信のあるデータサイエンスについて」

データサイエンスの中で新たな分野が現れ、研究内容が理解しにくい場合は、専門家や先駆者と話すのが最善です最近、私たちは...

人工知能

アーティスの創設者兼CEO、ウィリアム・ウーによるインタビューシリーズ

ウィリアム・ウーは、Artisseの創設者兼CEOであり、ユーザーの好みに基づいて写真を精密に変更する技術を提供していますそれ...

人工知能

ファイデムのチーフ・プロダクト・オフィサー、アルパー・テキン-インタビューシリーズ

アルパー・テキンは、FindemというAI人材の獲得と管理プラットフォームの最高製品責任者(CPO)ですFindemのTalent Data Clou...

人工知能

「ジャスティン・マクギル、Content at Scaleの創設者兼CEO - インタビューシリーズ」

ジャスティンは2008年以来、起業家、イノベーター、マーケターとして活動しています彼は15年以上にわたりSEOマーケティングを...

人工知能

ベイリー・カクスマー、ウォータールー大学の博士課程候補 - インタビューシリーズ

カツマー・ベイリーは、ウォータールー大学のコンピュータ科学学部の博士課程の候補者であり、アルバータ大学の新入教員です...

機械学習

3つの質問:大規模言語モデルについて、Jacob Andreasに聞く

CSAILの科学者は、最新の機械学習モデルを通じた自然言語処理の研究と、言語が他の種類の人工知能をどのように高めるかの調査...