レコメンダーシステムにおけるマルチタスク学習:入門

レコメンダーシステムのマルチタスク学習:入門

すべてを試みるアルゴリズムの背後にある科学とエンジニアリング

Mike Kononov氏による写真

マルチタスク学習は、コンピュータビジョンや自然言語処理では定着していますが、現代のレコメンダーシステムでの使用は比較的新しいため、あまり理解されていません。

この記事では、マルチタスクレコメンダーにおける最も重要な設計上の考慮事項と最近の研究の突破口について詳しく説明します。以下をカバーします。

  • まず、なぜマルチタスクレコメンダーシステムが必要なのか
  • マルチタスク学習の主要な課題であるポジティブとネガティブな転送
  • ハードパラメータ共有と専門家モデリング
  • 補助的な学習: 主目的の改善のために新しいタスクを追加するアイデア

さあ、始めましょう。

なぜマルチタスクレコメンダーシステムが必要なのか?

マルチタスクレコメンダーシステムの主な利点は、複数のビジネス目標を同時に解決する能力です。たとえば、ビデオレコメンダーシステムでは、クリック数だけでなく、視聴時間、いいね、シェア、コメントなどのユーザーエンゲージメントの形式も最適化したい場合があります。このような場合、複数のシングルタスクモデルよりも単一のマルチタスクモデルの方が計算コストが低く、タスクごとの予測精度も向上することがあります。

また、電子商取引のレコメンダーシステムなど、1つのイベント(「購入」など)のみを予測したい場合でも、主目的のパフォーマンスを向上させるために、補助的なタスクを追加することができます。これらの追加タスクを「補助的なタスク」と呼び、この形式の学習を「補助的な学習」と呼びます。電子商取引の例では、「購入」に加えて「カートに追加」や「リストに追加」も学習することは意味があります。これらのイベントはいずれもショッピングの意図を示しているためです。

どのタスクがよく共に学習されるか?

大まかに言えば、第二のタスクを予測することが最初のタスクの予測をサポートする場合と、逆に最初のタスクの予測を悪化させる場合があります。前者の場合を「ポジティブな転送」と呼びます。
後者の場合を「ネガティブな転送」と呼びます。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

アプリケーションの近代化における生成AIの活用

「生成AIは、極度の自動化の時代において、アプリケーションの近代化プログラムを加速させるための強力なエンエーブラーとな...

AIニュース

中国の強力なNvidia AIチップの隠れた市場

深圳華強北電子區的繁華街道之中,一個高端 Nvidia AI 芯片的地下市場悄然興起。這個隱蔽的世界在出口限制和對這些尖端處理器...

AIニュース

「AIサイバーセキュリティのスタートアップ企業、ヨーロッパと今度はアメリカからも、参集!」

新しいGoogle for Startups成長アカデミーの開始:ヨーロッパとアメリカに拠点を置く企業のためのAIセキュリティプログラムの...

人工知能

動的に画像のサイズを調整する

この投稿では、Apache APISIXをimgproxyと組み合わせて使用する方法について、複数の解像度で画像の保存コストを削減する方法...

機械学習

Google AIは、アクティブノイズキャンセリング(ANC)ヘッドフォンのための人工知能搭載の革新的な心臓モニタリングモダリティである音響脈波計(APG)を導入します

コンシューマーエレクトロニクスと健康技術の分野において、活発なノイズキャンセリング(ANC)ウェアラブルに健康モニタリン...

AI研究

「ADHDを持つ思春期の若者において、この深層学習研究はMRIスキャンの分析において独特な脳の変化を明らかにする:MRIスキャン分析の飛躍的な進歩」

画期的な開発により、研究者は人工知能(AI)の力を活用して、思春期の注意欠陥多動性障害(ADHD)の診断に内在する課題に取...