線形代数の鳥瞰図:基礎

線形代数の基礎

私たちは基底を考えずに、基底を書かずに考えますが、ピンチの時にはオフィスのドアを閉めて、行列を激しく計算します。

中間の旅で作成された風景の鳥瞰図。

線形代数は、数学でできることに基盤を提供する基本的な学問です。物理学から機械学習、確率論(例:マルコフ連鎖)まで、どんな分野でも使われます。何をしているにせよ、線形代数はいつも隠れていて、事が多次元になるとすぐに飛び出してきます。私の経験では(他の人からも聞いたことがある)、これは高校と大学の間に大きなショックをもたらす要因でした。高校(インド)では、非常に基本的な線形代数(主に行列式と行列の積)に触れました。そして大学の工学教育では、突然全ての科目が固有値、ヤコビアンなどの概念に精通していることを前提にしているようで、まるでその知識を生まれながらに持っているかのようです。

このブログは、この学問で知っておくべき概念とその明らかな応用の概要を提供することを目的としています。少なくとも何も知らないことを知っているようになるためのものです(もし何かあれば)。また、人々がより深く掘り下げるためのリソースとリンクを集めるための言い訳でもあります。

I) ベクトル空間

前のセクションで述べたように、多次元になると線形代数は必ず現れます。私たちはスカラーから始めます。スカラーは単なるある種の数です。この記事では、これらのスカラーには実数と複素数を考えます。一般的に、スカラーは加算、減算、乗算、除算といった基本的な演算が定義されているオブジェクト(「体」として抽象化される)であることが求められます。さて、これらの数の集合を記述するための枠組み(次元を追加する)が必要です。これらの集合は「ベクトル空間」と呼ばれます。私たちは、ベクトル空間の要素が実数または複素数である場合(前者は後者の特殊な場合です)を考えます。結果として得られるベクトル空間はそれぞれ「実数ベクトル空間」と「複素ベクトル空間」と呼ばれます。

線形代数のアイデアはこれらの「ベクトル空間」に適用されます。最も一般的な例は、床やテーブル、コンピュータの画面などです。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

ムーバブルインクのCEO兼共同創設者であるヴィヴェク・シャルマ氏についてのインタビュー・シリーズ

ビヴェクは2010年にムーバブルインクを共同設立し、急速な成長を遂げながら、600人以上の従業員を擁し、世界有数の革新的なブ...

人工知能

ジョシュ・フィースト、CogitoのCEO兼共同創業者 - インタビューシリーズ

ジョシュ・フィーストは、CogitoのCEO兼共同創業者であり、感情と会話AIを組み合わせた革新的なプラットフォームを提供するエ...

人工知能

「Zenの共同創設者兼CTO、イオン・アレクサンドル・セカラ氏によるインタビューシリーズ」

創業者兼CTOであるIon-Alexandru Secaraは、Zen(PostureHealth Inc.)の開発を牽引しており、画期的な姿勢矯正ソフトウェア...

人工知能

「Ntropyの共同創設者兼CEO、ナレ・ヴァルダニアンについて - インタビューシリーズ」

「Ntropyの共同創設者兼CEOであるナレ・ヴァルダニアンは、超人的な精度で100ミリ秒以下で金融取引を解析することを可能にす...

機械学習

「機械学習 vs AI vs ディープラーニング vs ニューラルネットワーク:違いは何ですか?」

テクノロジーの急速な進化は、ビジネスが効率化のために洗練されたアルゴリズムにますます頼ることで、私たちの日常生活を形...

人工知能

『ジュリエット・パウエル&アート・クライナー、The AI Dilemma – インタビューシリーズの著者』

『AIのジレンマ』は、ジュリエット・パウエルとアート・クライナーによって書かれましたジュリエット・パウエルは、著者であ...