キャンドル:Rustでのミニマリストな機械学習

キャンドル:Rustでの機械学習

Rustで独自の機械学習モデルを構築するためのガイド

@MidJourneyさんとの共著画像

人工知能(AI)企業のHugging Faceは、最近Rustプログラミング言語向けに設計された新しい最小限の機械学習(ML)フレームワークであるCandleを導入しました。この革新的なフレームワークは、既にGitHubで7.8千のスターと283のフォークを集めるなど、大きな注目を集めています。

Hugging Faceは、30万以上のオープンソース機械学習モデルの範囲を拡大するために、開発者向けのエコシステムを拡充することに取り組んでいます。スタートアップの製品・成長責任者であるJeff Boudier氏によれば、「大局的には、開発者のためのエコシステムを開発し、それを行うための非常に多くのトラクションを見ています」とのことです。

これは、Google、Amazon、Nvidia、Salesforce、AMD、Intel、IBM、Qualcommなどの業界の巨人からの支援を含む2億3500万ドルの資金調達に続いています。

Candle: RustでのMLフレームワーク

ほとんどのMLフレームワークは、従来はPythonで書かれ、PyTorchなどのライブラリに依存しています。これらのフレームワークはしばしば大きく、クラスターでのインスタンス作成が遅くなることがCandleのFAQでも指摘されています。

Candleは、サーバーレス推論をサポートすることで他とは異なります。サーバーレス推論は、インフラストラクチャを管理せずにMLモデルを実行する方法です。これは、軽量のバイナリのデプロイを可能にすることで実現されます。バイナリは、特定の環境でアプリケーションを実行するために必要なすべてのリソースを含んだ実行可能ファイルです。

さらに、Candleを使用すると、Pythonを製品のワークロードから排除し、Pythonのパフォーマンスオーバーヘッドやグローバルインタープリターロック(GIL)に関する懸念を解消することができます。GILは有益ですが、CPythonが完全なマルチコアパフォーマンスを達成するのを妨げることがあります。

@MidJourneyさんとの共著画像

Candleの始め方

Rustベースの機械学習プロジェクトでCandleを使用したい方々には、オープンソースのデータセットを使用して線形回帰モデルを構築する方法の例があります:

extern crate…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

「量子もつれ測定の革命:限られたデータで深層学習が従来の方法を上回る方法」

系統の量子もつれの程度は、系統のランダム性や量子もつれの係数など、さまざまな要素に依存します。この系統の特性は、機械...

機械学習

「このAIニュースレターはあなたが必要とするもの全てです #69」

Googleは、MicrosoftやAdobeといった企業に続き、彼らが提供するAIサービスの利用者を知的財産権侵害に関する訴訟から保護す...

データサイエンス

データサイエンスへのゲートの解除:GATE 2024 in DS&AIの究極の学習ガイド

イントロダクション Graduate Aptitude Test in Engineering(GATE)は、インドで行われる大学院入学試験です。この試験は主...

機械学習

量子AI:量子コンピューティングの潜在能力を機械学習で解き明かす

この記事では、量子機械学習について、現在の課題、機会、評価、成熟度、およびタイムリーさについて、読者がより詳しく学ぶ...

AIニュース

著者たちはAI企業に対して団結し、著作権保護された作品に対する尊重と報酬を求めます

著名な作家、マーガレット・アトウッド、ヴィエット・タン・グエン、フィリップ・プルマンなどの文学の巨匠たちが、人工知能...

データサイエンス

第四次産業革命:AIと自動化

イントロダクション 人類の絶え間ない未知の探求は、技術の進歩をもたらしてきました。AIと自動化から成る産業革命の到来が世...